Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
  • Colleges & Schools
  • Statistics
  • All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. College of Business
  3. School of Business
  4. Business Research Collection
  5. Genetic Algorithms using Grammatical Evolution
 
  • Details
Options

Genetic Algorithms using Grammatical Evolution

File(s)
FileDescriptionSizeFormat
Download nicolau06d.pdf1.3 MB
Author(s)
Nicolau, Miguel 
Uri
http://hdl.handle.net/10197/8262
Date Issued
September 2006
Date Available
13T15:37:45Z January 2017
Abstract
This thesis proposes a new representation for genetic algorithms, based on the idea of a genotype to phenotype mapping process. It allows the explicit encoding of the position and value of all the variables composing a problem, therefore disassociating each variable from its genotypic location. The GAuGE system (Genetic Algorithms using Grammatical Evolution) is developed using this mapping process. In a manner similar to Grammatical Evolution, it ensures that there is no under- nor over-specification of phenotypic variables, therefore always producing syntactically valid solutions. The process is simple to implement and independent of the search engine used; in this work, a genetic algorithm is employed. The formal definition of the mapping process, used in this work, provides a base for analysis of the system, at different levels. The system is applied to a series of benchmark problems, defining its main features and potential problem domains. A thorough analysis of its main characteristics is then presented, including its interaction with genetic operators, the effects of degeneracy, and the evolution of representation. This in-depth analysis highlights the system’s aptitude for relative ordering problems, where not only the value of each variable is to be discovered, but also their correct permutation. Finally, the system is applied to the real-world problem of solving Sudoku puzzles, which are shown to be similar to instances of planning and scheduling problems, illustrating the class of problems for which GAuGE can prove to be a useful approach. The results obtained show a substantial improvement in performance, when compared to a standard genetic algorithm, and pave the way to new applications to problems exhibiting similar characteristics.
Sponsorship
Science Foundation Ireland
Type of Material
Doctoral Thesis
Publisher
University of Limerick
Copyright (Published Version)
2006 the Author
Keywords
  • Genetic programming

  • Grammatical evolution...

Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
Owning collection
Business Research Collection
Views
1317
Last Month
28
Acquisition Date
Jan 28, 2023
View Details
Downloads
180
Last Month
42
Acquisition Date
Jan 28, 2023
View Details
google-scholar
University College Dublin Research Repository UCD
The Library, University College Dublin, Belfield, Dublin 4
Phone: +353 (0)1 716 7583
Fax: +353 (0)1 283 7667
Email: mailto:research.repository@ucd.ie
Guide: http://libguides.ucd.ie/rru

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement