Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
    Colleges & Schools
    Statistics
    All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Institutes and Centres
  3. Insight Centre for Data Analytics
  4. Insight Research Collection
  5. Mobile App to Streamline the Development of Wearable Sensor-Based Exercise Biofeedback Systems: System Development and Evaluation
 
  • Details
Options

Mobile App to Streamline the Development of Wearable Sensor-Based Exercise Biofeedback Systems: System Development and Evaluation

Author(s)
O'Reilly, Martin  
Duffin, Joe  
Ward, Tomás  
Caulfield, Brian  
Uri
http://hdl.handle.net/10197/9356
Date Issued
2017-08-21
Date Available
2018-05-04T11:48:05Z
Abstract
Background: Biofeedback systems that use inertial measurement units (IMUs) have been shown recently to have the ability toobjectively assess exercise technique. However, there are a number of challenges in developing such systems; vast amounts ofIMU exercise datasets must be collected and manually labeled for each exercise variation, and naturally occurring techniquedeviations may not be well detected. One method of combatting these issues is through the development of personalized exercisetechnique classifiers.Objective: We aimed to create a tablet app for physiotherapists and personal trainers that would automate the development ofpersonalized multiple and single IMU-based exercise biofeedback systems for their clients. We also sought to complete apreliminary investigation of the accuracy of such individualized systems in a real-world evaluation.Methods: A tablet app was developed that automates the key steps in exercise technique classifier creation through synchronizingvideo and IMU data collection, automatic signal processing, data segmentation, data labeling of segmented videos by an exerciseprofessional, automatic feature computation, and classifier creation. Using a personalized single IMU-based classification system,15 volunteers (12 males, 3 females, age: 23.8 [standard deviation, SD 1.8] years, height: 1.79 [SD 0.07] m, body mass: 78.4 [SD9.6] kg) then completed 4 lower limb compound exercises. The real-world accuracy of the systems was evaluated.Results: The tablet app successfully automated the process of creating individualized exercise biofeedback systems. Thepersonalized systems achieved 89.50% (1074/1200) accuracy, with 90.00% (540/600) sensitivity and 89.00% (534/600) specificityfor assessing aberrant and acceptable technique with a single IMU positioned on the left thigh.Conclusions: A tablet app was developed that automates the process required to create a personalized exercise techniqueclassification system. This tool can be applied to any cyclical, repetitive exercise. The personalized classification model displayedexcellent system accuracy even when assessing acute deviations in compound exercises with a single IMU.
Sponsorship
Science Foundation Ireland
Type of Material
Journal Article
Publisher
JMIR
Journal
JMIR Rehabilitation and Assistive Technologies
Volume
4
Issue
2
Copyright (Published Version)
2017 the Authors
Subjects

Personal Sensing

Exercise therapy

Biomedical technology...

Lower extremity

Physical therapy spec...

DOI
10.2196/rehab.7259
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
File(s)
Loading...
Thumbnail Image
Name

insight_publication.pdf

Size

1.67 MB

Format

Adobe PDF

Checksum (MD5)

25ab15a38002ed8305c661f7903dbcfd

Owning collection
Insight Research Collection
Mapped collections
Public Health, Physiotherapy and Sports Science Research Collection

Item descriptive metadata is released under a CC-0 (public domain) license: https://creativecommons.org/public-domain/cc0/.
All other content is subject to copyright.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement