Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
  • Colleges & Schools
  • Statistics
  • All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. College of Engineering & Architecture
  3. School of Biosystems and Food Engineering
  4. Biosystems and Food Engineering Research Collection
  5. Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems
 
  • Details
Options

Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems

File(s)
FileDescriptionSizeFormat
Download Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler.pdf445.66 KB
Author(s)
Herron, J 
Curran, Thomas P. 
Moloney, Aidan P. 
O'Brien, Donal 
Uri
http://hdl.handle.net/10197/11500
Date Issued
October 2019
Date Available
25T14:40:30Z August 2020
Abstract
The intensification of agricultural production systems to produce food for the growing world population is envisaged to result in the increase in nitrous oxide emissions (N2O). The goal of this study was therefore to assess the effect of different management practices on greenhouse gas (GHG) emissions from contrasting grass-based suckler beef farms with a particular focus on N2O emissions. The contrasting grass-based suckler beef systems evaluated were intensive (INT) and extensive (EXT) steer and heifer (SH) beef systems and bull and heifer (BH) systems. A whole farm model approach was taken to simulate GHG emissions from these baseline systems using data from a long-term research trial and a hybrid economic-GHG model. Several aspects of the hybrid model were updated. Default values for nitrogen (N) content of fresh and conserved grass were replaced with prediction equations. N excretion and partitioning prediction equations and emission factors (EF) for N2O from grazing cattle and fertiliser were also updated. The four baseline systems were simulated to harvest first cut silage on May 24. The pasture fertiliser rate for the EXT and INT systems were 77 kg N ha−1 and 205 kg N ha−1, respectively. To test the effect of changing management practices, the four baseline systems were simulated at earlier (May 5) and later (June 28) first cut silage harvest dates and 50% higher and lower pasture fertiliser application rates. In total, GHG emissions from four baseline systems and sixteen alternative scenarios were simulated. The carbon footprint of the baseline systems in kg CO2-equivalent (CO2e) per kg of carcass weight (kg CO2e CW−1) ranged from 17.7 for BH EXT to 19.4 for SH INT. This was lower than the latest published EU average of 22.2 kg CO2e CW−1. Across all scenarios, the increase in fertiliser application rate and earlier first cut silage harvest date increased the kg N2O kg CW−1 of the four production systems. Due to younger slaughter age facilitating higher stocking rates and thus higher productivity per hectare, systems finishing males as bulls at 16 months had lower N2O and total GHG emissions than production systems finishing males as steers at 24 months. Therefore, BH EXT with increased fertiliser application rate and earlier silage harvest date was the most sustainable suckler to beef production system while SH EXT with reduced fertiliser application rate and later silage harvest date was the least sustainable suckler to beef production system due to longer time to slaughter and consequently lower stocking rate.
Sponsorship
Department of Agriculture, Food and the Marine
Type of Material
Journal Article
Publisher
Elsevier
Journal
Agricultural Systems
Volume
175
Start Page
66
End Page
78
Copyright (Published Version)
2019 Elsevier
Keywords
  • Whole farm modelling

  • Nitrous oxide

  • Greenhouse gas

  • Suckler

  • Beef

  • Pasture

DOI
10.1016/j.agsy.2019.05.013
Language
English
Status of Item
Peer reviewed
ISSN
0308-521X
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
Owning collection
Biosystems and Food Engineering Research Collection
Scopus© citations
3
Acquisition Date
Feb 4, 2023
View Details
Views
640
Last Month
1
Acquisition Date
Feb 5, 2023
View Details
Downloads
218
Last Week
1
Last Month
7
Acquisition Date
Feb 5, 2023
View Details
google-scholar
University College Dublin Research Repository UCD
The Library, University College Dublin, Belfield, Dublin 4
Phone: +353 (0)1 716 7583
Fax: +353 (0)1 283 7667
Email: mailto:research.repository@ucd.ie
Guide: http://libguides.ucd.ie/rru

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement