Options
Effects of livestock wastewater variety and disinfectants on the performance of constructed wetlands in organic matters and nitrogen removal
Date Issued
2011-09
Date Available
2012-12-19T16:54:29Z
Abstract
Background, aim and scope: Treatment performance of constructed wetlands (CWs) is largely dependent on the characteristics of the wastewater. Although livestock wastewater is readily biodegradable in general, its variety in biodegradability can still be significant in practice. In addition, it is a common practice to periodically use disinfectants in livestock activities for health concerns. Obviously, the residual of the disinfectants in livestock wastewater may have serious inhibitory effect on the microbial activities during wastewater treatment. Thus, the main objective of this study was to examine the variety of livestock wastewater in biodegradability and its effect on the performance of a pilot scale tidal flow CWs (TFCWs) in organic matter and nitrogen removal. Furthermore, investigation of the potential inhibition of the chosen disinfectants on organic matter biodegradation and nitrification was another aim of this study.
Materials and methods: The TFCWs system consisted of four-stage downflow reed beds with a hydraulic loading rate of 0.29 m3/m2·per day. Long-term stored livestock wastewater and fresh livestock wastewater were used, respectively, as feed to the system in different periods. Meanwhile, batch aeration tests were carried out to investigate the difference in biodegradation of the two types of wastewaters. Inhibitions of two types of disinfectants, namely UNIPRED and HYPROCLOR ED, on microbial activities were investigated in laboratory batch tests, with dosage of from 0.05% to 0.5%.
Results: With fresh livestock wastewater, removal efficiencies of up to 93% and 94% could be achieved with average of 73% and 64% for chemical oxygen demand (COD) and TN, respectively. The performance deteriorated when the system was fed with long-term stored wastewater. In the batch tests, the long-time stored wastewater was characterized as non-biodegradable or at least very slowly biodegradable, while the fresh wastewater was readily biodegradable. UNIPRED showed very strong inhibition on both heterotrophic organisms and nitrifiers. Tested inhibition started from content of 0.05%, which is 1/10 of the recommended usage rate. Inhibitory effect of HYPROCLOR ED on COD degradation started from 0.1% and complete inhibition occurred from content of 0.3%, while significant inhibition on nitrification started from 0.1%.
Conclusions: Livestock wastewater could vary significantly in biodegradability and it may turn to be non-biodegradable after a long-term storage. The variety of the livestock wastewater has a decisive influence on the performance of the CWs system, especially in TN elimination. In addition, the application of disinfectants UNIPRED and HYPROCLOR ED may cause serious inhibition on microbial activities and subsequent system failure.
Other Sponsorship
Department of Agriculture, Fisheries and Food, Ireland: Research Stimulus Fund (project no. RSF 07-528)
Type of Material
Journal Article
Publisher
Springer
Journal
Environmental Science and Pollution Research
Volume
18
Issue
8
Start Page
1414
End Page
1421
Copyright (Published Version)
2011, Springer-Verlag
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
File(s)
Owning collection
Scopus© citations
14
Acquisition Date
Sep 7, 2024
Sep 7, 2024
Views
1867
Acquisition Date
Sep 6, 2024
Sep 6, 2024
Downloads
710
Last Month
4
4
Acquisition Date
Sep 6, 2024
Sep 6, 2024