Options
Context-Aware Co-attention Neural Network for Service Recommendations
Author(s)
Date Issued
2019-04-11
Date Available
2021-05-25T15:40:11Z
Abstract
Context-aware recommender systems are able to produce more accurate recommendations by harnessing contextual information, such as consuming time and location. Further, user reviews as an important information resource, providing valuable information about users' preferences, items' aspects, and implicit contextual features, could be used to enhance the embeddings of users, items, and contexts. However, few works attempt to incorporate these two types of information, i.e., contexts and reviews, into their models. Recent state-of-the-art context-aware methods only characterize relations between two types of entities among users, items and contexts, which may be insufficient, as the final prediction is closely related to all the three types of entities. In this paper, we propose a novel model, named Context-aware Co-Attention Neural Network (CCANN), to dynamically infer relations between contexts and users/items, and subsequently to model the degree of matching between users' contextual preferences and items' context-aware aspects via co-attention mechanism. To better leverage the information from reviews, we propose an embedding method, named Entity2Vec, to jointly learn embeddings of different entities (users, items and contexts) with words in a textual review. Experimental results, on three datasets composed of millions of review records crawled from TripAdvisor, demonstrate that our CCANN significantly outperforms state-of-the-art recommendation methods, and Entity2Vec can further boost the model's performance.
Sponsorship
Science Foundation Ireland
Other Sponsorship
Insight Research Centre
Type of Material
Conference Publication
Publisher
IEEE
Copyright (Published Version)
2019 IEEE
Web versions
Language
English
Status of Item
Peer reviewed
Journal
ICDEW 2019: 2019 IEEE 35th International Conference on Data Engineering Workshops, Proceedings
Conference Details
The 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), Macau, China, 8-11 April 2019
This item is made available under a Creative Commons License
File(s)
Loading...
Name
insight_publication.pdf
Size
872.78 KB
Format
Adobe PDF
Checksum (MD5)
bf2933a46ea30af84d761ac51e9e4f4a
Owning collection