Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
    Colleges & Schools
    Statistics
    All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Institutes and Centres
  3. Insight Centre for Data Analytics
  4. Insight Research Collection
  5. Pervasive Sound Sensing: A Weakly Supervised Training Approach
 
  • Details
Options

Pervasive Sound Sensing: A Weakly Supervised Training Approach

Author(s)
Kelly, Daniel  
Caulfield, Brian  
Uri
http://hdl.handle.net/10197/6853
Date Issued
2016-01
Date Available
2015-08-28T18:11:38Z
Abstract
Modern smartphones present an ideal device for pervasive sensing of human behaviour. Microphones have the potential to reveal key information about a persons behaviour.However, they have been utilized to a significantly lesser extent than other smartphone sensors in the context of human behaviour sensing. We postulate that, in order for microphones to be useful in behaviour sensing applications, the analysis tecniques must be flexible and allow easy modification of the types of sounds to be sensed. A simplification of the training data collection process could allow a more flexible sound classification framework. We hypothesize that detailed training, a prerequisite for the majority of sound sensing techniques, is not necessary and that a significantly less detailed and time consuming data collection process can be carried out, allow-ng even a non expert to conduct the collection, labeling, and training process. To test this hypothesis, we implement a diverse density-based multiple instance learning framework, to identify a target sound, and a bag trimming algorithm, which, using the target sound, automatically segments weakly labeled soundclips to construct an accurate training set. Experiments reveal that our hypothesis is a valid one and results show that classifiers, trained using the automatically segmented training sets,were able to accurately classify unseen sound samples with accuracies comparable to supervised classifiers, achieving an average F-measure of 0.969 and 0.87 for two weakly supervised datasets.
Type of Material
Journal Article
Publisher
IEEE
Journal
IEEE Transactions on Cybernetics
Issue
99
Copyright (Published Version)
2015 IEEE
Subjects

Personal sensing

Diverse density (DD)

Pattern recognition

Pervasive sensing

Sound classification

Weak supervision

DOI
10.1109/TCYB.2015.2396291
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
File(s)
Loading...
Thumbnail Image
Name

insight_publication.pdf

Size

1.69 MB

Format

Adobe PDF

Checksum (MD5)

ea12484b48031c27e85edecb920f84e7

Owning collection
Insight Research Collection

Item descriptive metadata is released under a CC-0 (public domain) license: https://creativecommons.org/public-domain/cc0/.
All other content is subject to copyright.

For all queries please contact research.repository@ucd.ie.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement