Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
  • Colleges & Schools
  • Statistics
  • All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. UCD Theses
  3. College of Health and Agricultural Sciences
  4. Public Health, Physiotherapy and Sports Science Theses
  5. The development and evaluation of a connected health exercise biofeedback platform to support orthopaedic rehabilitation
 
  • Details
Options

The development and evaluation of a connected health exercise biofeedback platform to support orthopaedic rehabilitation

File(s)
FileDescriptionSizeFormat
Download 7915241.pdf31.1 MB
Author(s)
Argent, Rob 
Uri
http://hdl.handle.net/10197/12856
Date Issued
2020
Date Available
05T15:53:22Z May 2022
Abstract
Home exercise programmes play a key role in patient rehabilitation following knee replacement surgery. The demand for these operations is increasing significantly due to the aging population, and in an attempt to reduce costs to healthcare providers, growing numbers of patients are being discharged directly home from hospital. These patients are typically provided with a home exercise programme which they are expected to complete on a routine basis, placing greater responsibility on the self-management skills of the patient. However, adherence to home exercise programmes is poor, with many reasons for lack of engagement, leading to sub-optimal rehabilitation outcomes and negative implications for the healthcare provider. Connected health technologies utilising ubiquitous mobile devices, alongside sensing platforms such as inertial measurement units, can be used to provide exercise biofeedback to patients in an automated manner. By harnessing machine learning to interpret sensor data captured during the exercise programme, the patient and clinician can receive personalised, accurate and timely information to support the rehabilitation process. Despite a number of systems being developed, acceptance and uptake remains poor. This is partly due to the lack of technical and user evaluation being undertaken, limiting the understanding of key components such as usability, feasibility and functionality. Hence, there is a need to thoroughly evaluate any newly developed systems from an early stage with key stakeholders. The focus of this programme of research was to develop and evaluate a prototype connected health exercise biofeedback system comprising of an Android tablet application and single inertial sensor for use in home exercise rehabilitation following knee replacement surgery. The research presented throughout this thesis suggests that whilst the developed prototype was easy to use and may aid engagement, there are numerous technical challenges in providing technique-based biofeedback using supervised machine learning. Furthermore, this thesis provides preliminary evidence that a more suitable and feasible method of providing feedback may be based on measuring joint angle, as opposed to the current classification approach.
Type of Material
Doctoral Thesis
Publisher
University College Dublin. School of Public Health, Physiotherapy and Sports Science
Qualification Name
Ph.D.
Copyright (Published Version)
2020 the Author
Keywords
  • Connected health

  • Inertial sensors

  • Exercise rehabilitati...

  • Orthopaedics

Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
Owning collection
Public Health, Physiotherapy and Sports Science Theses
Views
200
Last Week
2
Last Month
6
Acquisition Date
Mar 31, 2023
View Details
Downloads
58
Last Week
3
Last Month
13
Acquisition Date
Mar 31, 2023
View Details
google-scholar
University College Dublin Research Repository UCD
The Library, University College Dublin, Belfield, Dublin 4
Phone: +353 (0)1 716 7583
Fax: +353 (0)1 283 7667
Email: mailto:research.repository@ucd.ie
Guide: http://libguides.ucd.ie/rru

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement