Options
A convenient chemical-microbial method for developing fluorinated pharmaceuticals
File(s)
File | Description | Size | Format | |
---|---|---|---|---|
Accepted_manuscript_20-12-12.pdf | 608.41 KB |
Date Issued
2013
Date Available
23T14:12:35Z April 2014
Abstract
A significant proportion of pharmaceuticals are fluorinated and selecting the site of fluorine incorporation can be an important beneficial part a drug development process. Here we describe initial experiments aimed at the development of a general method
of selecting optimum sites on pro - drug molecules for fluorination, so that metabolic stability may be improved. Several model biphenyl derivatives were transformed by the fungus Cunninghamella elegans and the bacterium Streptomyces griseus, both of which contain cytochromes P450 that mimic oxidation processes in vivo, so that the site of oxidation could be determined. Subsequently, fluorinated biphenyl derivatives were synthesised using appropriate Suzuki - Miyaura coupling reactions, positioning the fluorine atom at the pre - determined site of microbial oxidation; the fluorinated biphenyl derivatives were incubated with the microorganisms and the degree of oxidation assessed. Biphenyl-4-carboxylic acid was transformed completely to 4' - hydroxybiphenyl - 4 - carboxylic acid by C. elegans but, in contrast, the 4' fluoro - analogue remained untransformed exemplifying the microbial oxidation – chemical fluorination concept. 2' -
Fluoro-and 3' - fluoro - biphenyl - 4 - carboxylic acid were also transformed, but more slowly than the non - fluorinated biphenyl carboxylic acid derivative. Thus, it is possible to design compounds in an iterative fashion with a longer metabolic half - life by identifying the sites that are most easily oxidised by in vitro methods and subsequent fluorination without recourse to extensive animal studies.
Type of Material
Journal Article
Publisher
Royal Society of Chemistry
Journal
Organic and Biomolecular Chemistry
Volume
11
Issue
7
Start Page
1135
End Page
1142
Copyright (Published Version)
2013 Royal Society of Chemistry
Keywords
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
Owning collection
Scopus© citations
36
Acquisition Date
Apr 1, 2023
Apr 1, 2023
Views
1609
Acquisition Date
Apr 1, 2023
Apr 1, 2023
Downloads
361
Last Month
7
7
Acquisition Date
Apr 1, 2023
Apr 1, 2023