Options
The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs
Date Issued
2012-09
Date Available
2013-11-28T17:31:56Z
Abstract
Once damaged, cardiac muscle has little intrinsic repair capability due to the poor regeneration potential of remaining cardiomyocytes. One method of overcoming this issue is to deliver functional cells to the injured myocardium to promote repair. To address this limitation we sought to test the hypothesis that electroactive carbon nanotubes (CNT) could be employed to direct mesenchymal stem cell (MSC) differentiation towards a cardiomyocyte lineage. Using a two-pronged approach, MSCs exposed to medium containing CNT and MSCs seeded on CNT based polylactic acid scaffolds were electrically stimulated in an electrophysiological bioreactor. After electrical stimulation the cells reoriented perpendicular to the direction of the current and adopted an elongated morphology. Using qPCR, an upregulation in a range of cardiac markers was detected, the greatest of which was observed for cardiac myosin heavy chain (CMHC), where a 40-fold increase was observed for the electrically stimulated cells after 14 days, and a 12-fold increase was observed for the electrically stimulated cells seeded on the PLA scaffolds after 10 days. Differentiation towards a cardioprogenitor cell was more evident from the western blot analysis, where upregulation of Nkx2.5, GATA-4, cardiac troponin t (CTT) and connexin43 (C43) was seen to occur. This was echoed in immunofluorescent staining, where increased levels of CTT, CMHC and C43 protein expression were observed after electrical stimulation for both cells and cell-seeded scaffolds. More interestingly, there was evidence of increased cross talk between the cells as shown by the pattern of C43 staining after electrical stimulation. These results establish a paradigm for nanoscale biomimetic cues that can be readily translated to other electroactive tissue repair applications.
Other Sponsorship
Science Foundation Ireland under the Research Frontiers Programme award no. RFP/05/ENG004, REMEDI CSET award no. 08/CE/B1436 and REMEDI SRC, award no. 09/SRC/B1794.
Type of Material
Journal Article
Publisher
Elsevier
Journal
Biomaterials
Volume
33
Issue
26
Start Page
6132
End Page
6139
Copyright (Published Version)
2012 Elsevier
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
File(s)
Loading...
Name
Paper131.pdf
Size
1.22 MB
Format
Adobe PDF
Checksum (MD5)
60c8d09466e0e590a724e10cd90c2a64
Owning collection