Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
    Colleges & Schools
    Statistics
    All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. College of Science
  3. School of Chemistry
  4. Chemistry Research Collection
  5. Lipid phase behaviour under steady state conditions
 
  • Details
Options

Lipid phase behaviour under steady state conditions

Author(s)
Åberg, Christoffer  
Sparr, Emma  
Wennerström, Håkan  
Uri
http://hdl.handle.net/10197/4573
Date Issued
2012-06-04
Date Available
2013-09-12T09:23:00Z
Abstract
At the interface between two regions, for example the air–liquid interface of a lipid solution, there can arise non-equilibrium situations. The water chemical potential corresponding to the ambient RH will, in general, not match the water chemical potential of the solution, and the gradients in chemical potential cause diffusional flows. If the bulk water chemical potential is close to a phase transition, there is the possibility of forming an interfacial phase with structures qualitatively different from those found in the bulk. Based on a previous analysis of this phenomenon in two component systems (C. Åberg, E. Sparr, K. J. Edler and H. Wennerström, Langmuir, 2009, 25, 12177), we here analyse the phenomenon for three-component systems. The relevant transport equations are derived, and explicit results are given for some limiting cases. Then the formalism is applied conceptually to four different aqueous lipid systems, which in addition to water and a phospholipid contain (i) octyl glucoside, (ii) urea, (iii) heavy water, and (iv) sodium cholate as the third component. These four cases are chosen to illustrate (i) a method to use a micelle former to transport lipid to the interface where a multi-lamellar structure can form; (ii) to use a co-solvent to inhibit the formation of a gel phase at the interface; (iii) a method to form pure phospholipid multi-lamellar structures at the interface; (iv) a method to form a sequence of phases in the interfacial region. These four cases all have the character of theoretically based conjectures and it remains to investigate experimentally whether or not the conditions can be realized in practice.
Type of Material
Journal Article
Publisher
Royal Society of Chemistry
Journal
Faraday discussions
Volume
161
Start Page
151
End Page
166
Copyright (Published Version)
The Royal Society of Chemistry 2013
Subjects

Non-equilibrium syste...

Interfacial phase for...

Relative humidity

DOI
10.1039/C2FD20079A
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
File(s)
Loading...
Thumbnail Image
Name

Wennerström_et_al_2012_revised.pdf

Size

5.6 MB

Format

Adobe PDF

Checksum (MD5)

b0ae5b6143c0172b6121b5263ff06ccc

Owning collection
Chemistry Research Collection

Item descriptive metadata is released under a CC-0 (public domain) license: https://creativecommons.org/public-domain/cc0/.
All other content is subject to copyright.

For all queries please contact research.repository@ucd.ie.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement