Options
Complex Nanostructures and Bio-Nanoscale Interactions: Well Defined Synthesis, Identification and Biological Effects
Author(s)
Date Issued
2022
Date Available
2022-12-15T17:18:43Z
Abstract
In this thesis, a framework was proposed in chapter II, aiming to identify distinct shape populations and build a quantitative linkage of well-defined nanoscale shapes to biological impacts. This inductive nanoscale shape discovery and evaluation framework is biologically relevant, and we believe by utilizing machine learning it could benefit the field of shape dependent therapy. In chapter III, the shape dependent histone modifications were reported. As histone modifications are one of the crucial epigenetic regulators that control chromatin structure and gene transcription, shape dependent histone modifications indicate that some important cellular phenotypes differences induced by nanoscale shapes may be related to the histone modifications, which opens a new window for the investigation of nanoscale shape effects and nano therapy. In chapter IV, we proposed a method to modify the surface of the nanostructures by endogenous cellular processes and studies found that this re-engineered particle complex was able to transfer the loading genes to recipient cells, which indicates their potential to work as an efficient nucleic acid delivery machine.
Type of Material
Doctoral Thesis
Publisher
University College Dublin. School of Chemistry
Qualification Name
Ph.D.
Copyright (Published Version)
2022 the Author
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
File(s)
No Thumbnail Available
Name
104438171.pdf
Size
14.02 MB
Format
Adobe PDF
Checksum (MD5)
7e077a6794913a04fdebd0fd750d18b5
Owning collection