Options
Regularity of generalized Daubechies wavelets reproducing exponential polynomials with real-valued parameters
Author(s)
Date Issued
2014-09
Date Available
2014-03-27T15:27:02Z
Abstract
We investigate non-stationary orthogonal wavelets based on a non-stationary
interpolatory subdivision scheme reproducing a given set of exponentials with real-valued
parameters. The construction is analogous to the construction of Daubechies wavelets
using the subdivision scheme of Deslauriers-Dubuc. The main result is the existence and
smoothness of these Daubechies type wavelets.
interpolatory subdivision scheme reproducing a given set of exponentials with real-valued
parameters. The construction is analogous to the construction of Daubechies wavelets
using the subdivision scheme of Deslauriers-Dubuc. The main result is the existence and
smoothness of these Daubechies type wavelets.
Type of Material
Journal Article
Publisher
Elsevier
Journal
Applied Computational Harmonic Analysis (ACHA)
Volume
37
Issue
2
Start Page
288
End Page
306
Copyright (Published Version)
2014 Elsevier
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
File(s)
Loading...
Name
DLKRArtikel1_OK_ver2_ACHA_SUBMITTEDone_rev5.pdf
Size
216.72 KB
Format
Adobe PDF
Checksum (MD5)
d5607d98c1115be0ef9387cebd12fa94
Owning collection