Quantitative comparison of closed-loop and dual harmonic Kelvin probe force microscopy techniques

DC FieldValueLanguage
dc.contributor.authorKilpatrick, Jason I.-
dc.contributor.authorCollins, Liam-
dc.contributor.authorWeber, Stefan A. L.-
dc.contributor.authorRodriguez, Brian J.-
dc.date.accessioned2019-04-25T07:35:28Z-
dc.date.available2019-04-25T07:35:28Z-
dc.date.copyright2018 the Authorsen_US
dc.date.issued2018-12-28-
dc.identifier.citationReview of Scientific Instrumentsen_US
dc.identifier.issn0034-6748-
dc.identifier.urihttp://hdl.handle.net/10197/10145-
dc.description.abstractKelvin probe force microscopy (KPFM) is a widely used technique to map surface potentials at the nanometer scale. In traditional KPFM, a feedback loop regulates the DC bias applied between a sharp conductive probe and a sample to nullify the electrostatic force (closed-loop operation). In comparison, open-loop techniques such as dual harmonic KPFM (DH-KPFM) are simpler to implement, are less sensitive to artefacts, offer the unique ability to probe voltage sensitive materials, and operate in liquid environments. Here, we directly compare the two techniques in terms of their bandwidth and sensitivity to instrumentation artefacts. Furthermore, we introduce a new correction for traditional KPFM termed “setpoint correction,” which allows us to obtain agreement between open and closed-loop techniques within 1%. Quantitative validation of DH-KPFM may lead to a wider adoption of open-loop KPFM techniques by the scanning probe community.en_US
dc.description.sponsorshipScience Foundation Irelanden_US
dc.description.sponsorshipUniversity College Dublinen_US
dc.format.mediumPrint-
dc.language.isoenen_US
dc.publisherAIP Publishingen_US
dc.subjectKelvin probe force microscopyen_US
dc.subjectNanometer scaleen_US
dc.subjectDielectric propertiesen_US
dc.subjectElectrical properties and parametersen_US
dc.subjectElectrostaticsen_US
dc.titleQuantitative comparison of closed-loop and dual harmonic Kelvin probe force microscopy techniquesen_US
dc.typeJournal Articleen_US
dc.internal.authorcontactotherbrian.rodriguez@ucd.ieen_US
dc.statusPeer revieweden_US
dc.identifier.volume89en_US
dc.identifier.issue12en_US
dc.identifier.startpage123708en_US
dc.identifier.doi10.1063/1.5025432-
dc.neeo.contributorKilpatrick|Jason I.|aut|-
dc.neeo.contributorCollins|Liam|aut|-
dc.neeo.contributorWeber|Stefan A. L.|aut|-
dc.neeo.contributorRodriguez|Brian J.|aut|-
dc.date.embargo2019-12-28en_US
dc.description.othersponsorshipThe Alexander von Humboldt Foundationen_US
dc.description.admin12 month embargo for this version - ACen_US
dc.date.updated2019-04-12T11:48:04Z-
dc.identifier.grantid07/IN1/B931-
dc.identifier.grantid12/IA/1449-
dc.identifier.grantid14/IFB/2711-
dc.identifier.grantid14/US/I3113-
dc.identifier.grantid15/IFB/3570-
dc.identifier.grantid17/CDA/4637-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20191228-
Appears in Collections:Conway Institute Research Collection
Physics Research Collection
Files in This Item:
Access to this item has been restricted by the copyright holder until:2019-12-28
File Description SizeFormat 
Kilpatrick_RSI_2018.pdf2.16 MBAdobe PDFDownload    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.