A Hybrid Algorithm for Multi-objective Test Case Selection

Files in This Item:
File Description SizeFormat 
Hybrid_Algorithm_for_MO_Test_Case_Selection_CameraReady.pdf130.67 kBAdobe PDFDownload
Title: A Hybrid Algorithm for Multi-objective Test Case Selection
Authors: Saber, Takfarinas
Delavernhe, Florian
Papadakis, Mike
O'Neill, Michael
Ventresque, Anthony
Permanent link: http://hdl.handle.net/10197/10479
Date: 4-Oct-2018
Online since: 2019-05-15T12:00:10Z
Abstract: Testing is crucial to ensure the quality of software systems-but testing is an expensive process, so test managers try to minimise the set of tests to run to save computing resources and speed up the testing process and analysis. One problem is that there are different perspectives on what is a good test and it is usually not possible to compare these dimensions. This is a perfect example of a multi-objective optimisation problem, which is hard-especially given the scale of the search space here. In this paper, we propose a novel hybrid algorithm to address this problem. Our method is composed of three steps: a greedy algorithm to find quickly some good solutions, a genetic algorithm to increase the search space covered and a local search algorithm to refine the solutions. We demonstrate through a large scale empirical evaluation that our method is more reliable (better whatever the time budget) and more robust (better whatever the number of dimensions considered)-in the scenario with 4 objectives and a default execution time, we are 178% better in hypervolume on average than the state-of-the-art algorithms.
Funding Details: Science Foundation Ireland
Type of material: Conference Publication
Publisher: IEEE
Copyright (published version): 2018 IEEE
Keywords: Multi-object optimisationHybrid metaheuristicSearch-based software engineeringTest suite selection
DOI: 10.1109/CEC.2018.8477875
Other versions: http://www.ecomp.poli.br/~wcci2018/
Language: en
Status of Item: Peer reviewed
Conference Details: The 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8-13 July 2018
Appears in Collections:Computer Science Research Collection

Show full item record

SCOPUSTM   
Citations 50

2
checked on May 17, 2019

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.