A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield

Files in This Item:
File Description SizeFormat 
A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield.pdf1.6 MBAdobe PDFDownload
Title: A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield
Authors: Gunupuru, Lokanadha R.
Arunachalam, Chanemougasoundharam
Malla, Keshav B.
Kahla, Amal
Perochon, Alexandre
Jia, Jianguang
Thapa, Ganesh
Doohan, Fiona M.
Permanent link: http://hdl.handle.net/10197/10593
Date: 12-Oct-2018
Online since: 2019-05-22T07:43:17Z
Abstract: The mycotoxin deoxynivalenol (DON) serves as a plant disease virulence factor for the fungi Fusarium graminearum and F. culmorum during the development of Fusarium head blight (FHB) disease on wheat. A wheat cytochrome P450 gene from the subfamily CYP72A, TaCYP72A, was cloned from wheat cultivar CM82036. TaCYP72A was located on chromosome 3A with homeologs present on 3B and 3D of the wheat genome. Using gene expression studies, we showed that TaCYP72A variants were activated in wheat spikelets as an early response to F. graminearum, and this activation was in response to the mycotoxic Fusarium virulence factor deoxynivalenol (DON). Virus induced gene silencing (VIGS) studies in wheat heads revealed that this gene family contributes to DON resistance. VIGS resulted in more DON-induced discoloration of spikelets, as compared to mock VIGS treatment. In addition to positively affecting DON resistance, TaCYP72A also had a positive effect on grain number. VIGS of TaCYP72A genes reduced grain number by more than 59%. Thus, we provide evidence that TaCYP72A contributes to host resistance to DON and conclude that this gene family warrants further assessment as positive contributors to both biotic stress resistance and grain development in wheat.
Funding Details: Science Foundation Ireland
Type of material: Journal Article
Publisher: PLOS
Journal: PLoS ONE
Volume: 13
Issue: 10
Start page: e0204992
Copyright (published version): 2018 the Authors
Keywords: WheatRNA extractionGene expressionSpringPhylogenetic analysisPolymerase chain reactionDetoxificationFusarium
DOI: 10.1371/journal.pone.0204992
Language: en
Status of Item: Peer reviewed
Appears in Collections:Biology & Environmental Science Research Collection
Earth Institute Research Collection

Show full item record

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.