ALMA observations of the Th 28 protostellar disk: A new example of counter-rotation between disk and optical jet

Files in This Item:
File Description SizeFormat 
aa28474-16.pdf2.55 MBAdobe PDFDownload
Title: ALMA observations of the Th 28 protostellar disk: A new example of counter-rotation between disk and optical jet
Authors: Louvet, F.Dougados, CatherineCabrit, SylvieCoffey, Deirdreet al.
Permanent link:
Date: 6-Dec-2016
Online since: 2019-10-16T11:42:59Z
Abstract: Aims. Recently, differences in Doppler shifts across the base of four close classical T Tauri star jets have been detected with the HST in optical and near-ultraviolet (NUV) emission lines, and these Doppler shifts were interpreted as rotation signatures under the assumption of steady state flow. To support this interpretation, it is necessary that the underlying disks rotate in the same sense. Agreement between disk rotation and jet rotation determined from optical lines has been verified in two cases and rejected in one case. Meanwhile, the near-ultraviolet lines, which may trace faster and more collimated inner spines of the jet than optical lines, either agree or show no clear indication. We propose to perform this test on the fourth system, Th 28. Methods. We present ALMA high angular resolution Band 7 continuum, 12CO(3-2) and 13CO(2-1) observations of the circumstellar disk around the T Tauri star Th 28. Results. The sub-arcsecond angular resolution (0.46′′× 0.37′′) and high sensitivity reached enable us to detect, in CO and continuum, clear signatures of a disk in Keplerian rotation around Th 28. The 12CO emission is clearly resolved, allowing us to derive estimates of disk position angle and inclination. The large velocity separation of the peaks in 12CO, combined with the resolved extent of the emission, indicate a central stellar mass in the range 1-2 MâŠ(tm). The rotation sense of the disk is well detected in both 13CO and 12CO emission lines, and this direction is opposite to that implied by the transverse Doppler shifts measured in the optical lines of the jet. Conclusions. The Th 28 system is now the second system, among the four investigated so far, where counter-rotation between the disk and the optical jet is detected. These findings imply either that optical transverse velocity gradients detected with HST do not trace jet rotation or that modeling the flow with the steady assumption is not valid. In both cases jet rotation studies that rely solely on optical lines are not suitable to derive the launching radius of the jet.
metadata.dc.description.othersponsorship: European Space Organisation
ESO (Government of Chile), CONICYT grant, NSF (USA), NINS (Japan), NRC (Canada), NSC (Taiwan), ASIAA (Taiwan), KASI (R. of Korea)
Type of material: Journal Article
Publisher: EDP Sciences
Journal: Astronomy and Astrophysics
Volume: 596
End page: A88
Copyright (published version): 2016 ESO
Keywords: Th 28StarJetsOutflowsInterferometricFormationCircumstellar matter
DOI: 10.1051/0004-6361/201628474
Language: en
Status of Item: Peer reviewed
Appears in Collections:Physics Research Collection

Show full item record

Citations 50

Last Week
Last month
checked on Apr 1, 2020

Page view(s)

Last Week
Last month
checked on Apr 2, 2020


checked on Apr 2, 2020

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.