Boosting Renewable Energy Technology Uptake in Ireland: A Machine Learning Approach

Files in This Item:
File Description SizeFormat 
WP20_27.pdf2.15 MBAdobe PDFDownload
Title: Boosting Renewable Energy Technology Uptake in Ireland: A Machine Learning Approach
Authors: Mukherjee, Sanghamitra
Permanent link: http://hdl.handle.net/10197/11647
Date: Sep-2020
Online since: 2020-10-30T15:13:38Z
Abstract: This study explores the impact of socio-demographic, behavioural, and built-environment characteristics on residential renewable energy technology adoption. It provides new insights on factors influencing uptake using nearest neighbour and random forest machine learning models at a granular spatial scale. Being computationally inexpensive and having good classification performance, these models serve as useful baseline prediction tools. Data is sourced from an Irish survey of consumer perceptions of three key technologies – electric vehicles, solar photovoltaic panels, and heat pumps – and general attitudes towards sustainability, innovation, risk, and time. We demonstrate that utility bills, residence period, attitudes to sustainability, satisfaction with household heating, and perceptions of hassle have the biggest influence on current uptake. Urban areas, typically having better access to information and resources, are likely to see the biggest uptake first. Additionally, compatibility of household infrastructure, technical interest, and social approval are the most important predictors of potential uptake. These results may inform policy in other early adopter markets as well. Overall, policy makers must be cognisant of the stage of adoption their country is currently at. Accordingly, a holistic approach to tackling low adoption must include measures that not only enhance adoption capabilities via rebates and financial measures, but also support the opportunity and intent to purchase such technologies.
Funding Details: Irish Research Council
metadata.dc.description.othersponsorship: ESB Networks
UCD Energy Institute
Type of material: Working Paper
Publisher: University College Dublin. School of Economics
Start page: 1
End page: 33
Series/Report no.: UCD Centre for Economic Research Working Paper Series; WP2020/27
Copyright (published version): 2020 the Author
Keywords: Renewable energy technology adoptionConsumer behaviourMachine learningHeat pumpsSolar PVsElectric vehicles
metadata.dc.subject.classification: D1; D9; O3; Q4
Language: en
Status of Item: Not peer reviewed
Appears in Collections:Energy Institute Research Collection
Economics Working Papers & Policy Papers

Show full item record

Page view(s)

125
Last Week
12
Last month
checked on Dec 1, 2020

Download(s)

16
checked on Dec 1, 2020

Google ScholarTM

Check


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.