Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
    Colleges & Schools
    Statistics
    All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Institutes and Centres
  3. I-Form: Advanced Manufacturing Research Centre
  4. I-Form Research Collection
  5. Selective laser melting of Ti-6Al-4V: Comparing μCT with in-situ process monitoring data
 
  • Details
Options

Selective laser melting of Ti-6Al-4V: Comparing μCT with in-situ process monitoring data

Author(s)
Egan, Darragh S.  
Jones, Kiera  
Dowling, Denis P.  
Uri
http://hdl.handle.net/10197/12286
Date Issued
2020-11
Date Available
2021-06-22T15:37:28Z
Abstract
Additive Manufacturing (AM) is increasingly used for the fabrication of metallic components used in the medical device, aerospace and automotive industries. With the wider adoption of AM in these sectors, there is an increased demand for the in-situ process monitoring of the build process. This study investigates the performance of a photodiode based, co-axial in-situ process monitoring (PM) system, during the Selective laser melting (SLM) of Ti6Al4V alloy parts. The PM system measures the optical and thermal emissions created by the meltpool, as well as the intensity and stability of the laser during the SLM process. The process monitoring software then creates a 2D or 3D representation of the part, based on the signal intensity recorded.The Ti6Al4V alloy parts were manufactured containing internal cavities, with diameters/width’s in the range of 200–600 mm, while varying the input energy between 32.9 and 131.6 J/mm3. A close correlation was established between the laser monitoring photodiode signal intensity and the laser energy input. Along with this, an increase in signal intensity recorded, by the meltpool monitoring photodiode, was observed when the first capping layer above a cavity, was processed by the laser. Further to this, it wasshown that only the first layer was influence by the overhang, with the signal generated by the layersdirectly above this remaining unaffected. In addition to providing data on the laser energy during thebuild process, the PM system also provided valuable information regarding the intensity of the meltpool.A comparison was made between the dimensional measurements obtained using PM software, with those obtained through CT scanning of the parts, post build. It was found that for the 600 mm cavities that the measurements were, at best, within 1.7% of each other. This closeness of such measurements however decreased very significantly as the size of the cavities decreased, with a variation for example, of up to 32%been obtained, for 400 mm cavities.
Sponsorship
Science Foundation Ireland
Type of Material
Journal Article
Publisher
Elsevier
Journal
CIRP Journal of Manufacturing Science and Technology
Volume
31
Start Page
91
End Page
98
Copyright (Published Version)
2020 CIRP
Subjects

Selective laser melti...

Production equipment

Process control

Process monitoring

DOI
10.1016/j.cirpj.2020.10.004
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
File(s)
No Thumbnail Available
Name

Selective laser melting of Ti-6Al-4V Comparing μCT with in-situ process monitoring data.docx

Size

3.35 MB

Format

Microsoft Word

Checksum (MD5)

4c96ca800944cfc55dcf14b5ed43501f

Owning collection
I-Form Research Collection
Mapped collections
Mechanical & Materials Engineering Research Collection

Item descriptive metadata is released under a CC-0 (public domain) license: https://creativecommons.org/public-domain/cc0/.
All other content is subject to copyright.

For all queries please contact research.repository@ucd.ie.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement