Inverse Analysis of Deep Excavation Using Differential Evolution Algorithm

DC FieldValueLanguage
dc.contributor.authorZhao, Budi-
dc.contributor.authorZhang, L.-
dc.contributor.authorJeng, D. S.-
dc.contributor.authoret al.-
dc.date.accessioned2021-11-08T15:08:58Z-
dc.date.available2021-11-08T15:08:58Z-
dc.date.copyright2014 Wileyen_US
dc.date.issued2015-02-10-
dc.identifier.citationInternational Journal for Numerical and Analytical Methods in Geomechanicsen_US
dc.identifier.issn0363-9061-
dc.identifier.urihttp://hdl.handle.net/10197/12593-
dc.description.abstractThis paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python‐based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well‐instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back‐analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back‐analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back‐estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back‐analyzed soil parameters at early stages.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsThis is the peer reviewed version of the following article: Zhao, B. D., Zhang, L. L., Jeng, D. S., Wang, J. H. and Chen, J. J. (2015), Inverse Analysis of Deep Excavation Using Differential Evolution Algorithm, Int. J. Numer. Anal. Meth. Geomech., 39, 115– 134,, which has been published in final form at http://onlinelibrary.wiley.com/doi/ 10.1002/nag.2287. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.en_US
dc.subjectExcavationsen_US
dc.subjectInverse analysisen_US
dc.subjectDifferential evolutionen_US
dc.subjectOptimization algorithmsen_US
dc.subjectDeflectionen_US
dc.subjectCam-clay modelen_US
dc.subjectGenetic algorithmen_US
dc.subjectParameter-identificationen_US
dc.subjectFinite-elementen_US
dc.subjectSoil parametersen_US
dc.subjectBack-analysisen_US
dc.subjectOptimizationen_US
dc.subjectFailureen_US
dc.titleInverse Analysis of Deep Excavation Using Differential Evolution Algorithmen_US
dc.typeJournal Articleen_US
dc.internal.authorcontactotherbudi.zhao@ucd.ieen_US
dc.statusPeer revieweden_US
dc.identifier.volume39en_US
dc.identifier.issue2en_US
dc.identifier.startpage115en_US
dc.identifier.endpage134en_US
dc.identifier.doi10.1002/nag.2287-
dc.neeo.contributorZhao|Budi|aut|-
dc.neeo.contributorZhang|L.|aut|-
dc.neeo.contributorJeng|D. S.|aut|-
dc.neeo.contributoret al.||aut|-
dc.description.othersponsorshipNatural Science Foundation of Chinaen_US
dc.description.othersponsorshipScience and Technology Commission of Shanghai Municipalityen_US
dc.date.updated2020-09-05T21:44:47Z-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Civil Engineering Research Collection
Files in This Item:
 File SizeFormat
DownloadZhao et al. Inverse.pdf1.08 MBAdobe PDF
Show simple item record

Page view(s)

213
Last Week
4
Last month
23
checked on Jan 17, 2022

Download(s)

22
checked on Jan 17, 2022

Google ScholarTM

Check

Altmetric


If you are a publisher or author and have copyright concerns for any item, please email research.repository@ucd.ie and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.