The Active Electrode in the Living Brain: The Response of the Brain Parenchyma to Chronically Implanted Deep Brain Stimulation Electrodes

Files in This Item:
 File SizeFormat
DownloadThe active electrode in the living brain_preprint.pdf1.3 MBAdobe PDF
Title: The Active Electrode in the Living Brain: The Response of the Brain Parenchyma to Chronically Implanted Deep Brain Stimulation Electrodes
Other Titles: Active Electrode in the living brain
Authors: Evers, JudithLowery, Madeleine M.
Permanent link:
Date: Feb-2019
Online since: 2021-11-19T16:07:04Z
Abstract: BACKGROUND: Deep brain stimulation is an established symptomatic surgical therapy for Parkinson disease, essential tremor, and a number of other movement and neuropsychiatric disorders. The well-established foreign body response around implanted electrodes is marked by gliosis, neuroinflammation, and neurodegeneration. However, how this response changes with the application of chronic stimulation is less well-understood. OBJECTIVE: To integrate the most recent evidence from basic science, patient, and postmortem studies on the effect of such an "active"electrode on the parenchyma of the living brain. METHODS: A thorough and in-part systematic literature review identified 49 papers. RESULTS: Increased electrode-tissue impedance is consistently observed in the weeks following electrode implantation, stabilizing at approximately 3 to 6 mo. Lower impedance values are observed around stimulated implanted electrodes when compared with unstimulated electrodes. A temporary reduction in impedance has also been observed in response to stimulation in nonhuman primates. Postmortem studies from patients confirm the presence of a fibrous sheath, astrocytosis, neuronal loss, and neuroinflammation in the immediate vicinity of the electrode. When comparing stimulated and unstimulated electrodes directly, there is some evidence across animal and patient studies of altered neurodegeneration and neuroinflammation around stimulated electrodes. CONCLUSION: Establishing how stimulation influences the electrical and histological properties of the surrounding tissue is critical in understanding how these factors contribute to DBS efficacy, and in controlling symptoms and side effects. Understanding these complex issues will aid in the development of future neuromodulation systems that are optimized for the tissue environment and required stimulation protocols.
Type of material: Review
Publisher: Oxford University Press
Journal: Operative Neurosurgery
Volume: 20
Issue: 2
Start page: 131
End page: 140
Copyright (published version): 2020 by the Congress of Neurological Surgeons
Keywords: Deep brain stimulationGlial scarElectrode-tissue interfaceHigh-frequency stimulationLong-term measurementSubthalamic nucleusParkinson's DiseaseConstant currentTissue responseCharge densityImpedanceDBSNeurostimulation
DOI: 10.1093/ons/opaa326
Language: en
Status of Item: Peer reviewed
ISSN: 2332-4252
This item is made available under a Creative Commons License:
Appears in Collections:Electrical and Electronic Engineering Research Collection

Show full item record

Page view(s)

checked on Nov 30, 2021


checked on Nov 30, 2021

Google ScholarTM



If you are a publisher or author and have copyright concerns for any item, please email and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.