NiO/ZrO2 nanocomposites as photocathodes of tandem DSCs with higher photoconversion efficiency with respect to parent single-photoelectrode p-DSCs

Files in This Item:
 File SizeFormat
DownloadNiO ZrO2nanocomposites as photocathodes - D.Dowling.pdf1.08 MBAdobe PDF
Title: NiO/ZrO2 nanocomposites as photocathodes of tandem DSCs with higher photoconversion efficiency with respect to parent single-photoelectrode p-DSCs
Authors: Bonomo, MatteoEkoi, Emmanuel J.Marrani, AndreaDowling, Denis P.et al.
Permanent link: http://hdl.handle.net/10197/12750
Date: 20-Aug-2021
Online since: 2022-01-19T13:23:08Z
Abstract: The nanocomposites of nickel oxide (NiO) and zirconia (ZrO2) (NZNCs) are particularly effective photocathodic materials in p-type dye-sensitized solar cells (p-DSCs) and tandem DSCs (t-DSCs). The t-DSCs obtained from P1-sensitized NZNC as photocathode and nanostructured titania (TiO2) sensitized with squaraine VG10-C8 as photoanode display overall efficiencies of ca. 2% at their best and, more importantly, produced photocurrents that surpassed systematically the values obtained from the parent devices having one photoelectrochemical interface. Such a finding is a consequence of the diminished resistance of the electrolyte the thickness of which is systematically smaller in t-DSCs with respect to parent DSCs with a single photoelectrochemical junction and same interelectrodic separation. The results here reported demonstrate that a careful combination of photoelectroactive electrodes can lead to an increase in current density of more than 15% in the t-DSC with respect to single-junction DSCs employing the same photoelectrodes provided that the whole thickness of the t-DSC is the same as in the single photoelectrode DSC and the photoelectrodes in the t-DSC do not incur in short-circuit phenomena through the electrolyte. For the successful realization of t-DSCs another important aspect is the complementarity of the absorption properties of the chosen colorants with the sensitized electrodes having similar absorbance in their respective ranges of optical absorption. The latter condition in t-DSCs makes possible the achievement of photoactivity spectra with a uniform efficiency of conversion in the whole visible range. For the attainment of efficient t-DSCs the two different photoelectrodes from parent DSCs (i.e. the devices at a single photoeletrochemical interface), should generate anodic and cathodic photocurrent densities with very similar values. Such a matching of photocurrents requires a careful selection of the thickness values for the photoelectrodes especially in case of materials with considerably different characteristics of charge injection. The approach here considered is a promising one for the assembly of quasi-transparent photoelectrochemical tandem devices operating as smart windows that convert light into electrical power.
Funding Details: Science Foundation Ireland
Funding Details: The Italian Ministry for Education, University and Research (MIUR)
Type of material: Journal Article
Publisher: Royal Society of Chemistry
Journal: Sustainable Energy & Fuels
Volume: 5
Issue: 18
Start page: 4736
End page: 4748
Keywords: Nanocomposite electrodesSpray-deposited suspensionsNickel oxideZirconia
DOI: 10.1039/D1SE00566A
Language: en
Status of Item: Peer reviewed
This item is made available under a Creative Commons License: https://creativecommons.org/licenses/by/3.0/ie/
Appears in Collections:Mechanical & Materials Engineering Research Collection
I-Form Research Collection

Show full item record

Page view(s)

263
Last Week
7
Last month
49
checked on May 21, 2022

Download(s)

38
checked on May 21, 2022

Google ScholarTM

Check

Altmetric


If you are a publisher or author and have copyright concerns for any item, please email research.repository@ucd.ie and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.