Stability enhancement strategies for a 100% grid-forming and grid-following converter-based Irish power system

Files in This Item:
 File SizeFormat
DownloadStability enhancement strategies for a 100_Oct_clean.docx4.8 MBUnknown
Title: Stability enhancement strategies for a 100% grid-forming and grid-following converter-based Irish power system
Authors: Zhao, XianxianFlynn, Damian
Permanent link:
Date: 1-Jan-2021
Online since: 2022-08-22T11:03:45Z
Abstract: With increasing shares of wind and/or solar power in many power systems, the possibility of a 100% power converter-based system becomes more likely. Consequently, the dynamic response of the Irish transmission systems with 100% (grid-following and grid-forming) power converters under 3-phase faults is investigated for 100% converter urban and remote scenarios. Time-domain simulations show that when active or reactive current prioritisation current saturation controls are applied, grid-forming converters can introduce large, high-frequency LC resonance oscillations, but a scaling-down current saturation approach can help to mitigate such problems as it generates smoother current references. Virtual impedance current limits are most effective at reducing oscillations, but the initial fault current can be transiently high. Furthermore, freezing the virtual angular speed for a grid-forming converter under either current saturation or virtual impedance current limitation approaches can enhance transient stability during faults. Finally, with modified controls applied to the grid-following converters, the grid-forming requirement can be reduced from approximately 40% to less than 30%, with the Remote Irish grid remaining robust against bolted 3-phase faults, and oscillations quickly damped out during and post fault.
Funding Details: Science Foundation Ireland
Type of material: Journal Article
Publisher: Wiley
Journal: IET Renewable Power Generation
Volume: 16
Issue: 1
Start page: 125
End page: 138
Copyright (published version): 2021 the Authors
Keywords: EngineeringFault ride-throughVirtual synchronous generatorsTransient stabilityFrequencyVoltageInstabilityImpedanceImpact
DOI: 10.1049/rpg2.12346
Language: en
Status of Item: Peer reviewed
ISSN: 1752-1416
This item is made available under a Creative Commons License:
Appears in Collections:Electrical and Electronic Engineering Research Collection

Show full item record

Page view(s)

Last Week
Last month
checked on Sep 26, 2022


checked on Sep 26, 2022

Google ScholarTM



If you are a publisher or author and have copyright concerns for any item, please email and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.