Solar Energy Conversion (SEC) Cluster Research Collection

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 63
  • Publication
    Dispersion and Solvation Effects on the Structure and Dynamics of N719 Adsorbed to Anatase Titania (101) Surfaces in Room-Temperature Ionic Liquids: An ab Initio Molecular Simulation Study
    Ab initio, density functional theory (DFT)-based molecular dynamics (MD) has been carried out to investigate the effect of explicit solvation on the dynamical and structural properties of a [bmim][NTf2] room-temperature ionic liquid (RTIL), solvating a N719 sensitizing dye adsorbed onto an anatase titania (101) surface. The effect of explicit dispersion on the properties of this dye-sensitized solar cell (DSC) interface has also been studied. Upon inclusion of dispersion interactions in simulations of the solvated system, the average separation between the cations and anions decreases by 0.6 Ã…; the mean distance between the cations and the surface decreases by about 0.5 Ã…; and the layering of the RTIL is significantly altered in the first layer surrounding the dye, with the cation being on average 1.5 Ã… further from the center of the dye. Inclusion of dispersion effects when a solvent is not explicitly included (to dampen longer-range interactions) can result in unphysical "kinking" of the adsorbed dye's configuration. The inclusion of solvent shifts the HOMO and LUMO levels of the titania surface by +3 eV. At this interface, the interplay between the effects of dispersion and solvation combines in ways that are often subtle, such as enhancement or inhibition of specific vibrational modes.
    Scopus© Citations 9  366
  • Publication
    A systematic study via ab-initio MD of the effect solvation by room temperature ionic liquid has on the structure of a chromophore-titania interface
    (Elsevier, 2018-01) ;
    Ab-initio, density functional theory (DFT)-based molecular dynamics (MD) has been carried out to investigate the effect with which the choice of functional has on the structural properties of a [bmim]+[NTf2]− room-temperature ionic liquid (RTIL), solvating a N719 sensitising dye adsorbed onto an anatase-titania (1 0 1) surface. A systematic, fully crossed study has been carried out, comparing the BLYP and PBE functionals, both unsolvated and solvated by the RTIL as well as with and without Grimme D3 dispersion corrections.
    Scopus© Citations 4  446
  • Publication
    Ab Initio Molecular Dynamics Studies of the Effect of Solvation by Room-Temperature Ionic Liquids on the Vibrational Properties of a N719-Chromophore/Titania Interface
    The accurate ab initio modeling of prototypical and well-representative photoactive interfaces for candidate dye-sensitized solar cells (DSCs) is a perennial problem in physical chemistry. To this end, the use of ab initio density functional theory-based molecular dynamics (AIMD) has been studied here to investigate the effect the choice of functional has on a system mimicking the essential workings of a DSC: the energetic properties of a [bmim]+[NTf2]- room-temperature ionic liquid (RTIL) solvating an N719-sensitizing dye adsorbed onto an anatase-titania (101) surface were scrutinized. In so doing, we glean important insights into how using an RTIL as electrolytic hole acceptor alters and modulates the dynamical properties of the widely used N719 dye. A fully crossed study has been carried out comparing the Becke-Lee-Yang-Parr (BLYP) and Perdew-Burke-Ernzerhof (PBE) functionals, both unsolvated and solvated by the RTIL, both with and without Grimme D3 dispersion corrections. Also, vibrational spectra for the photoactive interface in the DSC configuration were calculated by means of Fourier-transforming atomic mass-weighted velocity autocorrelation functions. The ab initio vibrational spectra were compared to high-quality experimental data and against each other; the effects of various methodological choices on the vibrational spectra were also studied, with PBE generally performing best in producing spectra, which matched the experimental frequency modes typically expected.
    Scopus© Citations 4  446
  • Publication
    2D Non-separable Linear Canonical Transform (2D-NS-LCT) based cryptography
    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random-Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.
      540
  • Publication
    Constraints to solve parallelogram grid problems in 2D non separable linear canonical transform
    The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial optical systems. Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field propagations and also of interest in many digital signal processing applications. In [Zhao 14] we have reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting the further calculations, e.g. inverse transform. One possible solution is to use the interpolation techniques; however, it reduces the speed and accuracy of the numerical approximations. To alleviate this problem, in this paper, some constraints are derived under which the output samples are located in the Cartesian coordinates. Therefore, no interpolation operation is required and thus the calculation error can be significantly eliminated.
      396