Coping with noisy search experiences

DC FieldValueLanguage
dc.contributor.authorChampin, Pierre-Antoine-
dc.contributor.authorBriggs, Peter-
dc.contributor.authorCoyle, Maurice-
dc.contributor.authorSmyth, Barry-
dc.date.accessioned2010-05-20T15:37:03Z-
dc.date.available2010-05-20T15:37:03Z-
dc.date.copyright2009 Elsevier B.V.en
dc.date.issued2010-05-
dc.identifier.citationKnowledge-Based Systemsen
dc.identifier.issn0950-7051-
dc.identifier.urihttp://hdl.handle.net/10197/1999-
dc.description.abstractThe so-called Social Web has helped to change the very nature of the Internet by emphasising the role of our online experiences as new forms of content and service knowledge. In this paper we describe an approach to improving main-stream Web search by harnessing the search experiences of groups of like-minded searchers. We focus on the HeyStaks system (www.heystaks.com) and look in particular at the experiential knowledge that drives its search recommendations. Specifically we describe how this knowledge can be noisy, and we describe and evaluate a recommendation technique for coping with this noise and discuss how it may be incorporated into HeyStaks as a useful feature.en
dc.description.sponsorshipScience Foundation Irelanden
dc.format.extent500817 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherElsevieren
dc.subjectExperienceen
dc.subjectWeb searchen
dc.subjectRecommender systemen
dc.subject.lcshInternet searchingen
dc.subject.lcshRecommender systems (Information filtering)en
dc.titleCoping with noisy search experiencesen
dc.typeJournal Articleen
dc.internal.availabilityFull text availableen
dc.internal.webversionshttp://dx.doi.org/10.1016/j.knosys.2009.11.011-
dc.statusPeer revieweden
dc.identifier.volume23en
dc.identifier.issue4en
dc.identifier.startpage287en
dc.identifier.endpage294en
dc.identifier.doi10.1016/j.knosys.2009.11.011-
dc.neeo.contributorChampin|Pierre-Antoine|aut|-
dc.neeo.contributorBriggs|Peter|aut|-
dc.neeo.contributorCoyle|Maurice|aut|-
dc.neeo.contributorSmyth|Barry|aut|-
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:CLARITY Research Collection
Computer Science Research Collection
Files in This Item:
File Description SizeFormat 
jkbs09.pdf489.08 kBAdobe PDFDownload
Show simple item record

SCOPUSTM   
Citations 50

6
Last Week
0
Last month
checked on Mar 21, 2019

Page view(s) 20

137
checked on May 25, 2018

Download(s) 10

860
checked on May 25, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.