Institute of Food and Health Research Collection

Permanent URI for this collection

For more information, please visit the official website.

Browse

Recent Submissions

Now showing 1 - 5 of 296
  • Publication
    Tóraíocht Bheo
    (University College Dublin. Institute of Food and Health, 2022-11-18) ; ; ;
      98
  • Publication
    Finding Beo
    (University College Dublin. Institute of Food and Health, 2022-11-18) ; ; ;
      308
  • Publication
    Combining biomarker and food intake data
    Recent developments in biomarker discovery have demonstrated that combining biomarkers with self-reported intake data has the potential to improve estimation of food intake. Here, statistical methods for combining biomarker and self-reported food intake data are discussed. The calibration equations method is a widely applied method that corrects for measurement error in self-reported food intake data through the use of biomarker data. The method is outlined and illustrated through an example where citrus intake is estimated. In order to estimate stable calibration equations, a simulation-based framework is delineated which estimates the percentage of study subjects from whom biomarker data is required. The method of triads is frequently used to assess the validity of self-reported food intake data by combining it with biomarker data. The method is outlined and sensitivity to its underlying assumptions is illustrated through simulation studies.
      20
  • Publication
    Classifying Individuals Into a Dietary Pattern Based on Metabolomic Data
    Scope: The objectives are to develop a metabolomic-based model capable of classifying individuals into dietary patterns and to investigate the reproducibility of the model. Methods and Results: K-means cluster analysis is employed to derive dietary patterns using metabolomic data. Differences across the dietary patterns are examined using nutrient biomarkers. The model is used to assign individuals to a dietary pattern in an independent cohort, A-DIET Confirm (n = 175) at four time points. The stability of participants to a dietary pattern is assessed. Four dietary patterns are derived: moderately unhealthy, convenience, moderately healthy, and prudent. The moderately unhealthy and convenience patterns has lower adherence to the alternative healthy eating index (AHEI) and the alternative mediterranean diet score (AMDS) compared to the moderately healthy and prudent patterns (AHEI = 24.5 and 22.9 vs 26.7 and 28.4, p < 0.001). The dietary patterns are replicated in A-DIET Confirm, with good reproducibility across four time points. The stability of participants’ dietary pattern membership ranged from 25.0% to 61.5%. Conclusion: The multivariate model classifies individuals into dietary patterns based on metabolomic data. In an independent cohort, the model classifies individuals into dietary patterns at multiple time points furthering the potential of such an approach for nutrition research.
      17Scopus© Citations 5
  • Publication
    Optimisation of a metabotype approach to deliver targeted dietary advice
    Background: Targeted nutrition is defined as dietary advice tailored at a group level. Groups known as metabotypes can be identified based on individual metabolic profiles. Metabotypes have been associated with differential responses to diet, which support their use to deliver dietary advice. We aimed to optimise a metabotype approach to deliver targeted dietary advice by encompassing more specific recommendations on nutrient and food intakes and dietary behaviours. Methods: Participants (n = 207) were classified into three metabotypes based on four biomarkers (triacylglycerol, total cholesterol, HDL-cholesterol and glucose) and using a k-means cluster model. Participants in metabotype-1 had the highest average HDL-cholesterol, in metabotype-2 the lowest triacylglycerol and total cholesterol, and in metabotype-3 the highest triacylglycerol and total cholesterol. For each participant, dietary advice was assigned using decision trees for both metabotype (group level) and personalised (individual level) approaches. Agreement between methods was compared at the message level and the metabotype approach was optimised to incorporate messages exclusively assigned by the personalised approach and current dietary guidelines. The optimised metabotype approach was subsequently compared with individualised advice manually compiled. Results: The metabotype approach comprised advice for improving the intake of saturated fat (69% of participants), fibre (66%) and salt (18%), while the personalised approach assigned advice for improving the intake of folate (63%), fibre (63%), saturated fat (61%), calcium (34%), monounsaturated fat (24%) and salt (14%). Following the optimisation of the metabotype approach, the most frequent messages assigned to address intake of key nutrients were to increase the intake of fruit and vegetables, beans and pulses, dark green vegetables, and oily fish, to limit processed meats and high-fat food products and to choose fibre-rich carbohydrates, low-fat dairy and lean meats (60-69%). An average agreement of 82.8% between metabotype and manual approaches was revealed, with excellent agreements in metabotype-1 (94.4%) and metabotype-3 (92.3%). Conclusions: The optimised metabotype approach proved capable of delivering targeted dietary advice for healthy adults, being highly comparable with individualised advice. The next step is to ascertain whether the optimised metabotype approach is effective in changing diet quality.
      15Scopus© Citations 7