Growth mechanism of photoreduced silver nanostructures on periodically proton exchanged lithium niobate: Time and concentration dependence

Files in This Item:
File Description SizeFormat 
JApplPhys_113_187212.pdf1.28 MBAdobe PDFDownload
Title: Growth mechanism of photoreduced silver nanostructures on periodically proton exchanged lithium niobate: Time and concentration dependence
Authors: Craig Carville, N.
Manzo, Michele
Denning, Denise
Gallo, Katia
Rodriguez, Brian J.
Permanent link:
Date: 8-May-2013
Abstract: Photodeposition of metallic nanostructures onto ferroelectric surfaces, which have been chemically patterned using a proton exchange process, has recently been demonstrated. By varying the molar concentration of the AgNO3 solution and the illumination time, one can determine the initial nucleation sites, control the rate of nucleation and the height of silver nanostructures formed, and study the mechanisms by which these processes occurs. The nanoparticles are found to deposit preferentially in the boundary between ferroelectric and proton exchanged regions, in an area proton exchanged via lateral diffusion under the masking layer used for chemical patterning, consistent with our previous results. Using a short illumination time (3 min), we are able to determine that the initial nucleation of the silver nanostructure, having a width of 0.17±0.02µm and a height of 1.61±0.98nm, occurs near the edge of the reactive ion etched area within this lateral diffusion region. Over longer illumination times (15 min), we find that the silver deposition has spread to a width of 1.29±0.06µm, extending across the entire lateral diffusion region. We report that at a high molar concentration of AgNO3 (10¯² M), the amount of silver deposition for 5 min UV illumination is greater (2.88±0.58nm) compared to that at low (10¯4M) concentrations (0.78±0.35nm), however, this is not the case for longer time periods. With increasing illumination time (15 min), experiments at 10¯4 M had greater overall deposition, 6.90±1.52nm, compared to 4.50±0.76nm at 10 ¯² M. For longer exposure times (30min) at 10 ¯² M the nanostructure height is 4.72±0.59nm, suggesting a saturation in the nanostructure height. The results are discussed in terms of the electric double layer that forms at the crystal surface. There is an order of magnitude difference between the Debye lengths for 10¯² and 10¯4 M solutions, i.e., 3.04 vs. 30.40nm, which suggests the Debye length plays a role in the availability of Ag+ ions at the surface.
Funding Details: Science Foundation Ireland
Type of material: Journal Article
Publisher: AIP
Copyright (published version): 2013 AIP Publishing LLC
Keywords: DiffusionElectrochemistryNanofabricationNanoparticlesNucleationSilverSputter etching
DOI: 10.1063/1.4801963
Language: en
Status of Item: Peer reviewed
Appears in Collections:Physics Research Collection

Show full item record

Citations 50

Last Week
Last month
checked on Aug 17, 2018

Page view(s) 10

checked on May 25, 2018

Download(s) 50

checked on May 25, 2018

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.