Visualizing molecular polar order in tissues via electromechanical coupling

Files in This Item:
File Description SizeFormat 
2012_Denning_J_Struc_Bio.pdf1.04 MBAdobe PDFDownload
Title: Visualizing molecular polar order in tissues via electromechanical coupling
Authors: Denning, Denise
Alilat, Sofiane
Habelitz, S.
Fertala, A.
Rodriguez, Brian J.
Permanent link:
Date: Dec-2012
Online since: 2013-06-10T12:19:24Z
Abstract: Electron microscopy (EM) and atomic force microscopy (AFM) techniques have long been used to characterize collagen fibril ordering and alignment in connective tissues. These techniques, however, are unable to map collagen fibril polarity, i.e., the polar orientation that is directed from the amine to the carboxyl termini. Using a voltage modulated AFM-based technique called piezoresponse force microscopy (PFM), we show it is possible to visualize both the alignment of collagen fibrils within a tissue and the polar orientation of the fibrils with minimal sample preparation. We demonstrate the technique on rat tail tendon and porcine eye tissues in ambient conditions. In each sample, fibrils are arranged into domains whereby neighboring domains exhibit opposite polarizations, which in some cases extend to the individual fibrillar level. Uniform polarity has not been observed in any of the tissues studied. Evidence of anti-parallel ordering of the amine to carboxyl polarity in bundles of fibrils or in individual fibrils is found in all tissues, which has relevance for understanding mechanical and biofunctional properties and the formation of connective tissues. The technique can be applied to any biological material containing piezoelectric biopolymers or polysaccharides.
Type of material: Journal Article
Publisher: Elsevier
Journal: Journal of Structural Biology
Volume: 180
Issue: 3
Start page: 409
End page: 419
Copyright (published version): 2012 Elsevier Inc.
Keywords: Atomic force microscopyPiezoresponse force microscopyCollagenPiezoelectricityPolar orderingEye tissuesTendon
DOI: 10.1016/j.jsb.2012.09.003
Other versions:
Language: en
Status of Item: Peer reviewed
Appears in Collections:Physics Research Collection

Show full item record

Citations 20

Last Week
Last month
checked on Feb 11, 2019

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.