Genetic classification of populations using supervised learning

Files in This Item:
 File SizeFormat
DownloadBridges_2011.pdf680.35 kBAdobe PDF
Title: Genetic classification of populations using supervised learning
Authors: Bridges, MichaelHeron, Elizabeth A.O'Dushlaine, ColmSegurado, RicardoMorris, DerekCorvin, AidenGill, MichaelPinto, Carlos
Permanent link: http://hdl.handle.net/10197/4378
Date: 12-May-2011
Online since: 2013-06-20T13:46:51Z
Abstract: There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.
Type of material: Journal Article
Publisher: Public Library of Science
Journal: PLoS ONE
Volume: 6
Issue: 5
Copyright (published version): 2011 Bridges et al.
Keywords: Population geneticsGenetic differencesMachine learning
DOI: 10.1371/journal.pone.0014802
Language: en
Status of Item: Peer reviewed
This item is made available under a Creative Commons License: https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
Appears in Collections:Public Health, Physiotherapy and Sports Science Research Collection

Show full item record

SCOPUSTM   
Citations 20

14
Last Week
0
Last month
0
checked on Sep 12, 2020

Page view(s) 20

1,802
Last Week
3
Last month
14
checked on Jan 23, 2022

Download(s)

180
checked on Jan 23, 2022

Google ScholarTM

Check

Altmetric


If you are a publisher or author and have copyright concerns for any item, please email research.repository@ucd.ie and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.