Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis

Files in This Item:
File Description SizeFormat 
RSC_advances_2013_JR.pdf1.05 MBAdobe PDFDownload
Title: Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis
Authors: Kennedy, Eamonn
Al-Majmaie, Rasoul
Al-Rubeai, Mohamed
Zerulla, Dominic
Rice, James H.
Permanent link: http://hdl.handle.net/10197/4512
Date: 7-Jun-2013
Abstract: The most immediate biological and medical advantages of therapeutic agent localization on the nanoscale arise from the increased understanding of targeted delivery, selectivity and intracellular distribution that are gained by imaging at the resolution scale of individual nanovectors and therapeutic agents themselves. This paper reports on the use of a nanoscale resolution chemical imaging method, infrared (IR) nanospectral absorption imaging, used to map the subcellular localization of a photoactive therapeutic agent - toluidine blue-conjugated gold nanoparticles (TBO) within nanoscale subsections of single colon adenocarcinoma cells. By comparison of photosensitizer distribution with diffraction limited optical imaging, the benefits of IR nanospectral localization are highlighted and the spatial and spectral accuracy of the non-destructive IR imaging method is confirmed. IR spectral ratio imaging is presented as a means to map intracellular nanoparticle density at sub 50 nm lateral resolution with IR nanospectroscopy enabling distinction of nanoparticle seeded cells from a control group with 95% confidence. In this way we illustrate that IR absorption nanoimaging combined with IR point source data does not only yield intracellular drug detection on the order of nanometres, but also permits extension of the AFM-IR technique from subcellular analysis up to studies of cell numbers that are statistically significant.
Type of material: Journal Article
Publisher: RSC Publishing
Copyright (published version): Royal Society of Chemistry 2013
Keywords: AFM;AFM-IR;Photothermal induced resonance;Cancer nanotechnology;Gold nanoparticles;Nanoimaging
DOI: 10.1039/C3RA42185F
Language: en
Status of Item: Peer reviewed
Appears in Collections:Physics Research Collection

Show full item record

SCOPUSTM   
Citations 20

19
Last Week
0
Last month
checked on Jun 23, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.