On the sharpness of straight edge blades in cutting soft solids: Part II – Analysis of blade geometry

Files in This Item:
File Description SizeFormat 
Part2_text_10_10_09_marked_up (SEND TO PDF).pdf465.33 kBAdobe PDFDownload
Title: On the sharpness of straight edge blades in cutting soft solids: Part II – Analysis of blade geometry
Authors: McCarthy, Conor T.
Ní Annaidh, Aisling
Gilchrist, M. D.
Permanent link: http://hdl.handle.net/10197/4910
Date: Feb-2010
Abstract: In Part I of this paper a new metric, titled the “blade sharpness index” or “BSI”, for quantifying the sharpness of a straight edge blade when cutting soft solids was derived from first principles and verified experimentally by carrying out indentation type cutting tests with different blade types cutting different target or substrate materials. In this Part II companion paper, a finite element model is constructed to examine the effect of different blade variables including tip radius, wedge angle and blade profile on the BSI developed in Part I. The finite element model is constructed using ABAQUS implicit and experiments are performed to characterise the non-linear material behaviour observed in the elastomeric substrate. The model is validated against the experiments performed in Part I and a suitable failure criterion is determined by carrying out experiments on blades with different tip radii. The paper finds that a simple maximum stress criterion is a good indicator for predicting the onset of cutting. The validated model is then used to examine blade geometry. It is shown that finite element analysis is an important tool in helping to understand the mechanics of indentation. Furthermore, the study finds that all the blade geometric variables have an influence on the sharpness of a blade, with the BSI being most sensitive to tip radius. Increasing the tip radius and wedge angle decreases the sharpness of the blade.
Type of material: Journal Article
Publisher: Elsevier
Copyright (published version): 2010 Elsevier
Keywords: SharpnessCuttingElastomersFinite element analysisIndentation
DOI: 10.1016/j.engfracmech.2009.10.003
Language: en
Status of Item: Peer reviewed
Appears in Collections:Mechanical & Materials Engineering Research Collection

Show full item record

Citations 10

Last Week
Last month
checked on Aug 17, 2018

Page view(s) 50

checked on May 25, 2018

Download(s) 20

checked on May 25, 2018

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.