Characterisation of the transcriptional regulator Rv3124 of Mycobacterium tuberculosis identifies it as a positive regulator of molybdopterin biosynthesis and defines the functional consequences of a nonsynonymous SNP in the Mycobacterium bovis BCG orthologue

Files in This Item:
 File SizeFormat
DownloadMendoza_Lopez-et_al_Microbiology_2010.pdf621.87 kBAdobe PDF
Title: Characterisation of the transcriptional regulator Rv3124 of Mycobacterium tuberculosis identifies it as a positive regulator of molybdopterin biosynthesis and defines the functional consequences of a nonsynonymous SNP in the Mycobacterium bovis BCG orthologue
Authors: Mendoza Lopez, PabloGolby, PaulWooff, EsenConlon, KevinGordon, Stephen V.et al.
Permanent link: http://hdl.handle.net/10197/5271
Date: Apr-2010
Online since: 2014-01-27T14:52:26Z
Abstract: A number of single nucleotide polymorphisms (SNPs) have been identified in the genome of Mycobacterium bovis BCG Pasteur compared to the sequenced strain M. bovis 2122/97. The functional consequences of many of these mutations remain to be described; however mutations in genes encoding regulators may be particularly relevant to global phenotypic changes such as loss of virulence, since alteration of a regulator's function will affect the expression of a wide range of genes. One such SNP falls in bcg3145, encoding a member of the AfsR/DnrI/SARP class of global transcriptional regulators, and replaces with glycine a highly conserved glutamic acid residue at position 159 (E159G) in a tetratricopeptide repeat (TPR) located in the bacterial transcriptional activation (BTA) domain of BCG3145. TPR domains are associated with protein-protein interactions, and a conserved core (helices T1-T7) of the BTA domain seems to be required for proper function of SARP-family proteins. Structural modelling predicted that the E159G mutation perturbs the third a-helix of the BTA domain and could therefore have functional consequences. The E159G SNP was found to be present in all BCG strains, but absent from virulent M. bovis and M. tuberculosis strains. By overexpressing BCG3145 and Rv3124 in BCG and H37Rv and monitoring transcriptome changes using microarrays, we determined that BCG3145/Rv3124 acts as a positive transcriptional regulator of the molybdopterin biosynthesis moa1 operon, and suggest that rv3124 be renamed moaR1. The SNP in bcg3145 was found to have a subtle effect on the activity of MoaR1, suggesting that this mutation is not a key event in the attenuation of BCG..
Funding Details: European Research Council
Type of material: Journal Article
Publisher: Society for General Microbiology
Journal: Microbiology
Volume: 156
Issue: 7
Start page: 2112
End page: 2123
Copyright (published version): 2010 Society for General Microbiology
Keywords: Non-synonymous SNPStreptomyces antibiotic regulatory proteinBacterial transcriptional activatorElectrophoretic mobility shift assayQuantitative reverse transcription PCRDNA-binding domain
DOI: 10.1099/mic.0.037200-0
Language: en
Status of Item: Peer reviewed
This item is made available under a Creative Commons License: https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
Appears in Collections:Veterinary Medicine Research Collection

Show full item record

SCOPUSTM   
Citations 20

11
Last Week
0
Last month
0
checked on Sep 12, 2020

Page view(s) 50

1,487
Last Week
3
Last month
8
checked on May 27, 2022

Download(s)

182
checked on May 27, 2022

Google ScholarTM

Check

Altmetric


If you are a publisher or author and have copyright concerns for any item, please email research.repository@ucd.ie and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.