Regularity of generalized Daubechies wavelets reproducing exponential polynomials with real-valued parameters

DC FieldValueLanguage
dc.contributor.authorDyn, Nira
dc.contributor.authorKounchev, Ognyan
dc.contributor.authorLevin, David
dc.contributor.authorRender, Hermann
dc.date.accessioned2014-03-27T15:27:02Z
dc.date.available2014-03-27T15:27:02Z
dc.date.copyright2014 Elsevieren
dc.date.issued2014-09
dc.identifier.citationApplied Computational Harmonic Analysis (ACHA)en
dc.identifier.urihttp://hdl.handle.net/10197/5484
dc.description.abstractWe investigate non-stationary orthogonal wavelets based on a non-stationary interpolatory subdivision scheme reproducing a given set of exponentials with real-valued parameters. The construction is analogous to the construction of Daubechies wavelets using the subdivision scheme of Deslauriers-Dubuc. The main result is the existence and smoothness of these Daubechies type wavelets.en
dc.language.isoenen
dc.publisherElsevieren
dc.rightsThis is the authors version of a work that was accepted for publication in Applied Computational Harmonic Analysis (ACHA). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Computational Harmonic Analysis (ACHA) 37(2) (2014) DOI:10.1016/j.acha.2013.12.003en
dc.subjectWavelet analysisen
dc.subjectNon-stationary waveletsen
dc.subjectNon-stationary subdivision
dc.subjectDaubechies wavelets
dc.titleRegularity of generalized Daubechies wavelets reproducing exponential polynomials with real-valued parametersen
dc.typeJournal Articleen
dc.internal.authorcontactotherhermann.render@ucd.ie
dc.internal.availabilityFull text availableen
dc.statusPeer revieweden
dc.identifier.volume37en
dc.identifier.issue2
dc.identifier.startpage288
dc.identifier.endpage306
dc.identifier.doi10.1016/j.acha.2013.12.003-
dc.neeo.contributorDyn|Nira|aut|-
dc.neeo.contributorKounchev|Ognyan|aut|-
dc.neeo.contributorLevin|David|aut|-
dc.neeo.contributorRender|Hermann|aut|-
dc.description.adminAD 26/03/2014en
dc.internal.rmsid367588252
dc.date.updated2014-03-01T10:07:47Z
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:Mathematics and Statistics Research Collection
Files in This Item:
File Description SizeFormat 
DLKRArtikel1_OK_ver2_ACHA_SUBMITTEDone_rev5.pdf216.72 kBAdobe PDFDownload
Show simple item record

SCOPUSTM   
Citations 50

9
Last Week
0
Last month
checked on Mar 21, 2019

Page view(s) 50

53
checked on May 25, 2018

Download(s) 50

101
checked on May 25, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.