Polyharmonic Hardy spaces on the complexified annulus and error estimates of cubature formulas

Files in This Item:
File Description SizeFormat 
Paper_ver8_Hermann_final_Birkh.pdf251.75 kBAdobe PDFDownload
Title: Polyharmonic Hardy spaces on the complexified annulus and error estimates of cubature formulas
Authors: Kounchev, Ognyan
Render, Hermann
Permanent link: http://hdl.handle.net/10197/5489
Date: Dec-2012
Abstract: The present paper has a twofold contribution: first, we intro- duce a new concept of Hardy spaces on a multidimensional complexified annular domain which is closely related to the annulus of the Klein-Di rac quadric important in Conformal Quantum Field Theory. Secondly, for functions in these Hardy spaces, we provide error estimate for the p oly- harmonic Gauß-Jacobi cubature formulas, which have been introduced in previous papers.
Type of material: Journal Article
Publisher: Springer
Journal: Results in Mathematics
Volume: 62
Issue: 3-4
Start page: 377
End page: 403
Copyright (published version): 2012 Springer
Keywords: Hardy spaceNumerical integrationCubature formulasError estimate
DOI: 10.1007/s00025-012-0290-6
Language: en
Status of Item: Peer reviewed
Appears in Collections:Mathematics and Statistics Research Collection

Show full item record

Citations 50

Last Week
Last month
checked on Dec 4, 2018

Page view(s) 50

checked on May 25, 2018

Download(s) 50

checked on May 25, 2018

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.