Development of mapped stress-field boundary conditions based on a Hill-type muscle model

Title: Development of mapped stress-field boundary conditions based on a Hill-type muscle model
Authors: Cardiff, Philip
Karac, Aleksandar
FitzPatrick, David P.
et al.
Permanent link:
Date: 7-Apr-2014
Online since: 2014-09-29T10:53:13Z
Abstract: Forces generated in the muscles and tendons actuate the movement of the skeleton. Accurate estimation and application of these musculotendon forces in a continuum model is not a trivial matter. Frequently, musculotendon attachments are approximated as point forces; however, accurate estimation of local mechanics requires a more realistic application of musculotendon forces. This paper describes the development of mapped Hill-type muscle models as boundary conditions for a finite volume model of the hip joint, where the calculated muscle fibres map continuously between attachment sites. The applied muscle forces are calculated using active Hill-type models, where input electromyography signals are determined from gait analysis. Realistic muscle attachment sites are determined directly from tomography images. The mapped muscle boundary conditions, implemented in a finite volume structural OpenFOAM (ESI-OpenCFD, Bracknell, UK) solver, are employed to simulate the mid-stance phase of gait using a patient-specific natural hip joint, and a comparison is performed with the standard point load muscle approach. It is concluded that physiological joint loading is not accurately represented by simplistic muscle point loading conditions; however, when contact pressures are of sole interest, simplifying assumptions with regard to muscular forces may be valid.
Type of material: Journal Article
Publisher: Wiley Blackwell (John Wiley & Sons)
Journal: International Journal for Numerical Methods in Biomedical Engineering
Volume: 30
Issue: 9
Start page: 890
End page: 908
Copyright (published version): 2014 Wiley Blackwell (John Wiley & Sons)
Keywords: Active hill muscle modelsMapped muscle boundary conditionsFinite volume methodOpenFOAMElectromyographyContact stress analysis
DOI: 10.1002/cnm.2634
Language: en
Status of Item: Peer reviewed
Appears in Collections:Mechanical & Materials Engineering Research Collection

Show full item record

Citations 50

Last Week
Last month
checked on Feb 20, 2019

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.