Mechanical characterization of brain tissue in simple shear at dynamic strain rates

Files in This Item:
File Description SizeFormat 
Simple shear final.pdf1.3 MBAdobe PDFDownload
Title: Mechanical characterization of brain tissue in simple shear at dynamic strain rates
Authors: Rashid, Badar
Destrade, Michel
Gilchrist, M. D.
Permanent link: http://hdl.handle.net/10197/5965
Date: Dec-2013
Abstract: During severe impact conditions, brain tissue experiences a rapid and complex deformation, which can be seen as a mixture of compression, tension and shear. Diffuse axonal injury (DAI) occurs in animals and humans when both the strains and strain rates exceed 10% and 10/s, respectively. Knowing the mechanical properties of brain tissue in shear at these strains and strain rates is thus of particular importance, as they can be used in finite element simulations to predict the occurrence of brain injuries under different impact conditions. However, very few studies in the literature provide this information. In this research, an experimental setup was developed to perform simple shear tests on porcine brain tissue at strain rates ≤120/s. The maximum measured shear stress at strain rates of 30, 60, 90 and 120/s was 1.15±0.25 kPa, 1.34±0.19 kPa, 2.19±0.225 kPa and 2.52±0.27 kPa, (mean±SD), respectively at the maximum amount of shear, K =1. Good agreement of experimental, theoretical (Ogden and Mooney–Rivlin mod)and numerical shear stresses was achieved (p =0.7866–0.9935). Specimen thickness effects (2.0–10.0 mm thick specimens) were also analyzed numerically and we found that there is no significant difference (p =0.9954) in the shear stress magnitudes, indicating a homogeneous deformation of the specimens during simple shear tests. Stress relaxation tests in simple shear were also conducted at different strain magnitudes (10–60% strain) with the average rise time of 14 ms. This allowed us to estimate elastic and viscoelastic parameters (initial shear modulus, μ=4942.0 Pa, and Prony parameters: g1=0.520, g2=0.3057, τ1=0.0264 s, and τ2=0.011 s) that can be used in FE software to analyze the non-linear viscoelastic behavior of brain tissue. This study provides new insight into the behavior in finite shear of brain tissue under dynamic impact conditions, which will assist in developing effective brain injury criteria and adopting efficient countermeasures against traumatic brain injury.
Type of material: Journal Article
Publisher: Elsevier
Journal: Journal of the Mechanical Behavior of Biomedical Materials
Volume: 28
Start page: 71
End page: 85
Copyright (published version): 2013 Elsevier
Keywords: Diffuse axonal injury (DAI)OgdenMooney–RivlinTraumatic brain injury (TBI)HomogeneousViscoelasticRelaxation
DOI: 10.1016/j.jmbbm.2013.07.017
Language: en
Status of Item: Peer reviewed
Appears in Collections:Mechanical & Materials Engineering Research Collection

Show full item record

SCOPUSTM   
Citations 5

65
Last Week
0
Last month
checked on Oct 19, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.