Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and a disorder of DNA repair

Files in This Item:
File Description SizeFormat 
Casey_MCM4_2012.pdf431.93 kBAdobe PDFDownload
Title: Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and a disorder of DNA repair
Authors: Casey, Jillian
Nobbs, Michael
McGettigan, Paul A.
Ennis, Sean
et al.
Permanent link: http://hdl.handle.net/10197/6162
Date: Apr-2012
Abstract: Background: A study is presented of 10 children with a novel syndrome born to consanguineous parents from the Irish Traveller population. The syndrome is characterised by a natural killer (NK) cell deficiency, evidence of an atypical Fanconi's type DNA breakage disorder, and features of familial glucocorticoid deficiency (FGD). The NK cell deficiency probably accounts for the patients' recurrent viral illnesses. Molecular tests support a diagnosis of mosaic Fanconi's anaemia, but the patients do not present with any of the expected clinical features of the disorder. The symptomatic presentation of FGD was delayed in onset and may be a secondary phenotype. As all three phenotypes segregate together, the authors postulated that the NK cell deficiency, DNA repair disorder and FGD were caused by a single recessive genetic event.Methods: Single-nucleotide polymorphism homozygosity mapping and targeted next-generation sequencing of 10 patients and 16 unaffected relatives. Results: A locus for the syndrome was identified at 8p11.21-q11.22. Targeted resequencing of the candidate region revealed a homozygous mutation in MCM4/PRKDC in all 10 affected individuals. Consistent with the observed DNA breakage disorder, MCM4 and PRKDC are both involved in the ATM/ATR (ataxia-telangiectasia-mutated/ATM-Rad 3-related) DNA repair pathway, which is defective in patients with Fanconi's anaemia. Deficiency of PRKDC in mice has been shown to result in an abnormal NK cell physiology similar to that observed in these patients.Conclusion: Mutations in MCM4/PRKDC represent a novel cause of DNA breakage and NK cell deficiency. These findings suggest that clinicians should consider this disorder in patients with failure to thrive who develop pigmentation or who have recurrent infections.
Funding Details: Health Research Board
Irish Research Council for Science, Engineering and Technology
Science Foundation Ireland
Type of material: Journal Article
Publisher: BMJ Publishing Group
Copyright (published version): 2012 BMJ
Keywords: Failure to thriveDNA repair defectNatural killer cell deficiencyFamilial glucocorticoid deficiencyMCM4Travelers
DOI: 10.1136/jmedgenet-2012-100803
Language: en
Status of Item: Peer reviewed
Appears in Collections:Biomolecular and Biomedical Science Research Collection

Show full item record

SCOPUSTM   
Citations 20

19
Last Week
0
Last month
checked on Sep 17, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.