Nanofiltration and reverse osmosis surface topographical heterogeneities: do they matter for initial bacterial adhesion?

Files in This Item:
File Description SizeFormat 
Nanofiltration_and_Reverse_osmosis_surface_topographical_heterogeneities.pdf1.33 MBAdobe PDFDownload
Title: Nanofiltration and reverse osmosis surface topographical heterogeneities: do they matter for initial bacterial adhesion?
Authors: Allen, Ashley
Correia-Semião, Andrea Joana C.
Habimana, Olivier
Heffernan, Rory
Safari, Ashkan
Casey, Eoin
Permanent link: http://hdl.handle.net/10197/6487
Date: 15-Jul-2015
Abstract: The role of the physicochemical and surface properties of NF/RO membranes influencing bacterial adhesion has been widely studied. However, there exists a poor understanding of the potential role membrane topographical heterogeneities can have on bacterial adhesion. Heterogeneities on material surfaces have been shown to influence bacterial adhesion and biofilm development. The purpose of this study was therefore to investigate whether the presence of membrane topographical heterogeneities had a significant role during bacterial adhesion as this could significantly impact on how biofouling develops on membranes during NF/RO operation. An extensive study was devised in which surface topographical heterogeneities from two commercial membranes, NF270 and BW30, were assessed for their role in the adhesion of two model organisms of different geometrical shapes, Pseudomonas fluorescens and Staphylococcus epidermidis. The influence of cross-flow velocity and permeate flux was also tested, as well as the angle to which bacteria adhered compared to the flow direction. Bacterial adhesion onto the membranes and in their surface topographical heterogeneities was assessed using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), fluorescence microscopy and image analysis. Results showed that up to 30% of total adhered cells were found in membrane defect areas when defect areas only covered up to 13% of the membrane surface area. This suggests that topographical heterogeneities may play a significant role in establishing environmental niches during the early stages of biofilm development. Furthermore, no noticeable difference between the angle of cell attachment in defect areas compared to the rest of the membrane surface was found.
Funding Details: European Research Council
Science Foundation Ireland
Type of material: Journal Article
Publisher: Elsevier
Copyright (published version): 2015 Elsevier
Keywords: Topography;Biofouling;Nanofiltration;Reverse osmosis;AFM;Biofilm
DOI: 10.1016/j.memsci.2015.03.029
Language: en
Status of Item: Peer reviewed
Appears in Collections:Chemical and Bioprocess Engineering Research Collection

Show full item record

SCOPUSTM   
Citations 20

9
Last Week
0
Last month
checked on Jun 23, 2018

Page view(s) 50

67
checked on May 25, 2018

Download(s) 50

138
checked on May 25, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.