A Note on Milnor-Witt K-theory and a Theorem of Suslin

DC FieldValueLanguage
dc.contributor.authorHutchinson, Kevin-
dc.contributor.authorTao, Liqun-
dc.date.accessioned2015-04-29T12:27:29Z-
dc.date.available2015-04-29T12:27:29Z-
dc.date.copyright2008 Taylor and Francisen
dc.date.issued2008-
dc.identifier.citationCommunications in Algebraen
dc.identifier.urihttp://hdl.handle.net/10197/6517-
dc.description.abstractWe give a simple presentation of the additive Milnor-Witt K-theory groups KMWn(F) of the field F, for n≥2, in terms of the natural small set of generators. When n = 2, this specialises to a theorem of Suslin which essentially says that KMW2(F)∼=H2(Sp(F),Z).en
dc.description.sponsorshipScience Foundation Irelanden
dc.language.isoenen
dc.publisherTaylor and Francisen
dc.rightsThis is an electronic version of an article published in Communications in Algebra, 36(7): 2710-2718. Communications in Algebra is available online at: www.tandfonline.com/doi/abs/10.1080/00927870802068128en
dc.subjectGroup homologyen
dc.subjectK-Theoryen
dc.subjectWitt ringsen
dc.titleA Note on Milnor-Witt K-theory and a Theorem of Suslinen
dc.typeJournal Articleen
dc.internal.authorcontactotherkevin.hutchinson@ucd.ie-
dc.internal.availabilityFull text availableen
dc.statusPeer revieweden
dc.identifier.volume36en
dc.identifier.issue7en
dc.identifier.startpage2710en
dc.identifier.endpage2718en
dc.identifier.doi10.1080/00927870802068128-
dc.neeo.contributorHutchinson|Kevin|aut|-
dc.neeo.contributorTao|Liqun|aut|-
dc.internal.rmsid15419654-
dc.date.updated2015-04-20T10:11:32Z-
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:Mathematics and Statistics Research Collection
Files in This Item:
File Description SizeFormat 
milnor-witt.pdf159.63 kBAdobe PDFDownload
Show simple item record

SCOPUSTM   
Citations 50

4
Last Week
0
Last month
checked on Mar 21, 2019

Page view(s) 50

20
checked on May 25, 2018

Download(s) 50

110
checked on May 25, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.