A computational and experimental study of protein localisation determinants in the mammalian endomembrane system

Files in This Item:
File Description SizeFormat 
Kranjc_ucd_5090D_10047.pdf67.52 MBAdobe PDFDownload
Title: A computational and experimental study of protein localisation determinants in the mammalian endomembrane system
Authors: Kranjc, Tilen
Advisor: Simpson, Jeremy C
Shields, Denis C
Permanent link: http://hdl.handle.net/10197/6839
Date: 2015
Abstract: The subcellular localisation of a protein, together with its sequence and structure, provide the first information about its function. Although several approaches for determining localisation exist, the most widely used experimental methods involve the overexpression of a GFP-tagged construct of the protein in a cultured cell or staining the endogenous protein with specific fluorescently-labelled antibodies. Computational sequence-based localisation predictors have been developed, and are of value, but they are still limited in their predictive power. Considering the now extensive use of imaging approaches, it is therefore unsurprising that much effort has been put into the development of automated image analysis methods to classify localisation. Image classifiers are typically trained on ground truth data, which introduces certain bias. The aim of modern algorithms is to eliminate human interaction and instead perform unsupervised classification of the images. The study presented in this thesis addresses three aspects of protein localisation methodology: sequence-based localisation prediction with short linear motifs (SLiMs), unsupervised image analysis with texture features and experimental determination of protein localisation.SLiMs are 3-12 amino acid long linear peptides enriched in disordered regions of proteins that interact with domains of other proteins. The aim of this study was to search for novel targeting SLiMs in a dataset of proteins for which their localisation had already been experimentally determined.
Type of material: Doctoral Thesis
Publisher: University College Dublin. School of Biology and Environmental Science
Qualification Name: Ph.D.
Copyright (published version): 2015 the author
Keywords: Image analysisMembrane traffickingMicroscopyPRAFTexture featuresYIPF
Other versions: http://dissertations.umi.com/ucd:10047
Language: en
Status of Item: Peer reviewed
metadata.dc.date.available: 2017-06-09T01:00:12Z
Appears in Collections:Biology and Environmental Science Theses

Show full item record

Download(s) 50

checked on May 25, 2018

Google ScholarTM


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.