Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

Files in This Item:
File Description SizeFormat 
Neumayer_et_al_J_Appl_Phys_2015.pdf1.38 MBAdobe PDFDownload
Title: Interface and thickness dependent domain switching and stability in Mg doped lithium niobate
Authors: Neumayer, Sabine M.
Ivanov, Ilia N.
Manzo, Michele
Rodriguez, Brian J.
et al.
Permanent link: http://hdl.handle.net/10197/7362
Date: 8-Dec-2015
Abstract: Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switchingproperties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy(PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the 'up' to the 'down' state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original 'up' state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.
Funding Details: European Commission - Seventh Framework Programme (FP7)
Science Foundation Ireland
Type of material: Journal Article
Publisher: American Institute of Physics
Copyright (published version): 2015 AIP Publishing LLC
Keywords: PolarizationAtomic force microscopyFerroelectric switchingDopingProtons
DOI: 10.1063/1.4936605
Language: en
Status of Item: Peer reviewed
Appears in Collections:Conway Institute Research Collection
Physics Research Collection

Show full item record

SCOPUSTM   
Citations 50

5
Last Week
0
Last month
checked on Aug 9, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.