How well do you know your growth chambers? Testing for chamber effect using plant traits

Title: How well do you know your growth chambers? Testing for chamber effect using plant traits
Authors: Porter, Amanda S.
Evans-FitzGerald, Christiana
McElwain, Jennifer C.
Yiotis, Charilaos
Elliott-Kingston, Caroline
Permanent link:
Date: 22-Sep-2015
Abstract: Background: Plant growth chambers provide a controlled environment to analyse the effects of environmental parameters (light, temperature, atmospheric gas composition etc.) on plant function. However, it has been shown that a ‘chamber effect’ may exist whereby results observed are not due to an experimental treatment but to inconspicuous differences in supposedly identical chambers. In this study, Vicia faba L. 'Aquadulce Claudia' (broad bean) plants were grown in eight walk-in chambers to establish if a chamber effect existed, and if so, what plant traits are best for detecting such an effect. A range of techniques were used to measure differences between chamber plants, including chlorophyll fluorescence measurements, gas exchange analysis, biomass, reproductive yield, anatomical traits and leaf stable carbon isotopes. Results and discussion: Four of the eight chambers exhibited a chamber effect. In particular, we identified two types of chamber effect which we term 'resolvable' or 'unresolved'; a resolvable chamber effect is caused by malfunctioning components of a chamber and an unresolved chamber effect is caused by unknown factors that can only be mitigated by appropriate experimental design and sufficient replication. Not all measured plant traits were able to detect a chamber effect and no single trait was capable of detecting all chamber effects. Fresh weight and flower count detected a chamber effect in three chambers, stable carbon isotopes (δ13C) and net rate CO2 assimilation (An) identified a chamber effect in two chambers, stomatal conductance (gs) and total performance index detected an effect only in one chamber. Conclusion: (1) Chamber effects can be adequately detected by fresh weight measurements and flower counts on Vicia faba plants. These methods were the most effective in terms of detection and most efficient in terms of time. (2) δ13C, gs and An measurements help distinguish between resolvable and unresolved chamber effects. (3) Unresolved chamber effects require experimental unit replication while resolvable chamber effects require investigation, repair and retesting in advance of initiating further experiments.
Funding Details: European Research Council
Science Foundation Ireland
Type of material: Journal Article
Publisher: BioMed Central
Copyright (published version): 2015 the Authors
Keywords: Chamber effect;Chlorophyll fluorescence;Controlled environment;Experimental design;Fresh weight;Gas analysis;Plant anatomy;Plant growth chamber;Stable carbon isotopes;Uniformity trials
DOI: 10.1186/s13007-015-0088-0
Language: en
Status of Item: Peer reviewed
Appears in Collections:Biology & Environmental Science Research Collection
Earth Institute Research Collection
Agriculture and Food Science Research Collection

Show full item record

Citations 50

Last Week
Last month
checked on Jun 22, 2018

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.