Modeling sea-level change using errors-in-variables integrated Gaussian processes

Files in This Item:
File Description SizeFormat 
Cahill_SeaLevelAOAS_2015.pdf1.46 MBAdobe PDFDownload
Title: Modeling sea-level change using errors-in-variables integrated Gaussian processes
Authors: Cahill, Niamh
Kemp, Andrew C.
Horton, Benjamin P.
Parnell, Andrew C.
Permanent link: http://hdl.handle.net/10197/8032
Date: Jun-2015
Abstract: We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The input data to our model are tidegauge measurements and proxy reconstructions from cores of coastal sediment. These data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. The model we propose places a Gaussian process prior on the rate of sea-level change, which is then integrated and set in an errors-in-variables framework to take account of age uncertainty. The resulting model captures the continuous and dynamic evolution of sea-level change with full consideration of all sources of uncertainty. We demonstrate the performance of our model using two real (and previously published) example data sets. The global tide-gauge data set indicates that sea-level rise increased from a rate with a posterior mean of 1.13 mm/yr in 1880 AD (0.89 to 1.28 mm/yr 95% credible interval for the posterior mean) to a posterior mean rate of 1.92 mm/yr in 2009 AD (1.84 to 2.03 mm/yr 95% credible interval for the posterior mean). The proxy reconstruction from North Carolina (USA) after correction for land-level change shows the 2000 AD rate of rise to have a posterior mean of 2.44 mm/yr (1.91 to 3.01 mm/yr 95% credible interval). This is unprecedented in at least the last 2000 years.
Type of material: Journal Article
Publisher: Institute of Mathematical Statistics
Keywords: Bayesian statisticsIntegrated Gaussian processesErrors-in-variablesProxy reconstructionTide gauge
DOI: 10.1214/15-AOAS824
Language: en
Status of Item: Peer reviewed
Appears in Collections:Mathematics and Statistics Research Collection

Show full item record

SCOPUSTM   
Citations 20

13
Last Week
0
Last month
checked on Aug 9, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.