Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

DC FieldValueLanguage
dc.contributor.authorMockler, Eva M.-
dc.contributor.authorChun, K. P.-
dc.contributor.authorSapriza-Azuri, G.-
dc.contributor.authorBruen, Michael-
dc.contributor.authorWheater, H. S.- the Authorsen
dc.identifier.citationAdvances in Water Resourcesen
dc.description.abstractPredictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.en
dc.subjectHydrological modellingen
dc.subjectRainfall modellingen
dc.subjectModel parametersen
dc.subjectPerformance criteriaen
dc.titleAssessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulationsen
dc.typeJournal Articleen
dc.statusPeer revieweden
dc.neeo.contributorMockler|Eva M.|aut|-
dc.neeo.contributorChun|K. P.|aut|-
dc.neeo.contributorWheater|H. S.|aut|-
dc.description.othersponsorshipIreland Canada University Foundation (ICUF)en
dc.description.othersponsorshipIrish Environmental Protection Agencyen
dc.description.othersponsorshipGlobal Institute for Water Securityen
item.fulltextWith Fulltext-
Appears in Collections:Centre for Water Resources Research Collection
Civil Engineering Research Collection
Files in This Item:
File Description SizeFormat 
Mockler_AWR_2016.pdf4.44 MBAdobe PDFDownload
Show simple item record

Citations 50

Last Week
Last month
checked on Aug 17, 2018

Download(s) 50

checked on May 25, 2018

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.