People's conditional probability judgments follow probability theory (plus noise)

Files in This Item:
Access to this item has been restricted by the copyright holder until:2018-09-01
File Description SizeFormat 
conditionals_revised_11.pdf2.29 MBAdobe PDFDownload    Request a copy
Title: People's conditional probability judgments follow probability theory (plus noise)
Authors: Costello, Fintan
Watts, Paul
Permanent link: http://hdl.handle.net/10197/8159
Date: Sep-2016
Abstract: A common view in current psychology is that people estimate probabilities using various 'heuristics' or rules of thumb that do not follow the normative rules of probability theory. We present a model where people estimate conditional probabilities such as P(A|B) (the probability of A given that B has occurred) by a process that follows standard frequentist probability theory but is subject to random noise. This model accounts for various results from previous studies of conditional probability judgment. This model predicts that people's conditional probability judgments will agree with a series of fundamental identities in probability theory whose form cancels the effect of noise, while deviating from probability theory in other expressions whose form does not allow such cancellation. Two experiments strongly confirm these predictions, with people's estimates on average agreeing with probability theory for the noise-cancelling identities, but deviating from probability theory (in just the way predicted by the model) for other identities. This new model subsumes an earlier model of unconditional or 'direct' probability judgment which explains a number of systematic biases seen in direct probability judgment (Costello & Watts, 2014). This model may thus provide a fully general account of the mechanisms by which people estimate probabilities.
Type of material: Journal Article
Publisher: Elsevier
Copyright (published version): 2016 Elsevier
Keywords: Probability;Conditional probability;Rationality;Biases;Heuristics
DOI: 10.1016/j.cogpsych.2016.06.006
Language: en
Status of Item: Peer reviewed
Appears in Collections:Computer Science Research Collection

Show full item record

SCOPUSTM   
Citations 50

5
Last Week
0
Last month
checked on Jun 16, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.