Options
Resistive Pulse Sensing of Analyte-Induced Multicomponent Rod Aggregation Using Tunable Pores
File(s)
File | Description | Size | Format | |
---|---|---|---|---|
Small_2012_-_Resistive_Pulse_Sensing_of_Analyte.pdf | 624.43 KB |
Author(s)
Date Issued
06 July 2012
Date Available
06T16:50:57Z March 2017
Abstract
Resistive pulse sensing is used to monitor individual and aggregated rod-shaped nanoparticles as they move through tunable pores in elastomeric membranes. By comparing particles of similar dimensions, it is demonstrated that the resistive pulse signal of a rod is fundamentally different from that of a sphere. Rods can be distinguished using two measurements: the blockade event magnitude (Δip), which reveals the particle's size, and the full width at half maximum (FWHM) duration, which relates to the particle's speed and length. While the observed Δip values agree well with simulations, the measured FWHM times are much larger than expected. This increase in dwell time, caused by rods moving through the pore in various orientations, is not observed for spherical particles. These differences are exploited in a new agglutination assay using rod-shaped particles. By controlling the surface chemistry and location of the capture ligand, rods are made to form either long “end-on-end” or wide 'side-on' aggregates upon the addition of an analyte. This observation will facilitate multiplexed detection in agglutination assays, as particles with a particular aspect ratio can be distinguished by two measurements. This is first demonstrated with a biotinylated target and avidin capture probe, followed by the detection of platelet-derived growth factor (PDGF-BB) using an aptamer capture probe, with limits of detection down to femtomolar levels.
Sponsorship
European Commission - Seventh Framework Programme (FP7)
Type of Material
Journal Article
Publisher
Wiley
Journal
Small
Volume
8
Issue
15
Start Page
2436
End Page
2444
Copyright (Published Version)
2012 Wiley
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
Owning collection
Scopus© citations
72
Acquisition Date
Jan 30, 2023
Jan 30, 2023
Views
1759
Acquisition Date
Jan 30, 2023
Jan 30, 2023
Downloads
380
Last Month
24
24
Acquisition Date
Jan 30, 2023
Jan 30, 2023