Metabolomic-based identification of clusters that reflect dietary patterns

Files in This Item:
File Description SizeFormat 
Nutritypes_MNF-final_version_with_Figure_&_Supporting.pdf793.23 kBAdobe PDFDownload
Title: Metabolomic-based identification of clusters that reflect dietary patterns
Authors: Gibbons, Helena
Carr, Eibhlin
McNulty, Breige A.
Walton, Janette
Flynn, Albert
Gibney, Michael J.
Brennan, Lorraine
Permanent link: http://hdl.handle.net/10197/8758
Date: 20-Jul-2017
Abstract: Scope: Classification of subjects into dietary patterns generally relies on self-reporting dietary data which are prone to error. The aim of the present study was to develop a model for objective classification of people into dietary patterns based on metabolomic data. Methods and results: Dietary and urinary metabolomic data from the National Adult Nutrition Survey (NANS) was used in the analysis (n=567). Two-step cluster analysis was applied to the urinary data to identify clusters. The subsequent model was used in an independent cohort to classify people into dietary patterns. Two distinct dietary patterns were identified. Cluster 1 was characterized by significantly higher intakes of breakfast cereals, low fat and skimmed milks, potatoes, fruit and fish, fish dishes (P<0.05) representing a 'healthy' cluster. Cluster 2 had significantly higher intakes of chips/processed potatoes, meat products, savory snacks and high-energy beverages (P<0.05) representing an 'unhealthy cluster'. Classification was supported by significant differences in nutrient status (P<0.05). Validation in an independent group revealed that 94% of subjects were correctly classified. Conclusion: The model developed was capable of classifying individuals into dietary patterns based on metabolomics data. Future applications of this approach could be developed for rapid and objective assignment of subjects into dietary patterns.
Funding Details: Department of Agriculture, Food and the Marine
European Research Council
Health Research Board
Science Foundation Ireland
Type of material: Journal Article
Publisher: Wiley
Copyright (published version): 2017 Wiley
Keywords: Cluster analysis;Dietary assessment;Dietary patterns;Metabolomics;Nutritypes
DOI: 10.1002/mnfr.201601050
Language: en
Status of Item: Peer reviewed
Appears in Collections:Institute of Food and Health Research Collection
Agriculture and Food Science Research Collection

Show full item record

SCOPUSTM   
Citations 50

2
Last Week
0
Last month
checked on Jun 16, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.