Automatic Construction of Generalization Hierarchies for Publishing Anonymized Data

DC FieldValueLanguage
dc.contributor.authorAyala-Rivera, Vanessa-
dc.contributor.authorMurphy, Liam, B.E.-
dc.contributor.authorThorpe, Christina-
dc.date.accessioned2017-09-18T12:49:17Z-
dc.date.available2017-09-18T12:49:17Z-
dc.date.issued2016-10-07-
dc.identifier.urihttp://hdl.handle.net/10197/8768-
dc.descriptionInternational Conference on Knowledge Science, Engineering and Management (KSEM), Passau, Germany, October, 2016en
dc.description.abstractConcept hierarchies are widely used in multiple fields to carry out data analysis. In data privacy, they are known as Value Generalization Hierarchies (VGHs), and are used by generalization algorithms to dictate the data anonymization. Thus, their proper specification is critical to obtain anonymized data of good quality. The creation and evaluation of VGHs require expert knowledge and a significant amount of manual effort, making these tasks highly error-prone and timeconsuming. In this paper we present AIKA, a knowledge-based framework to automatically construct and evaluate VGHs for the anonymization of categorical data. AIKA integrates ontologies to objectively create and evaluate VGHs. It also implements a multi-dimensional reward function to tailor the VGH evaluation to different use cases. Our experiments show that AIKA improved the creation of VGHs by generating VGHs of good quality in less time than when manually done. Results also showed how the reward function properly captures the desired VGH properties.en
dc.description.sponsorshipScience Foundation Irelanden
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofLehner, F. and Fteimi, N. (eds.) Lecture Notes in Computer Science (LNCS, volume 9983)en
dc.rightsThe final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-47650-6_21en
dc.subjectGeneralization hierarchiesen
dc.subjectAnonymizationen
dc.subjectData privacyen
dc.subjectKnowledge-based frameworken
dc.titleAutomatic Construction of Generalization Hierarchies for Publishing Anonymized Dataen
dc.typeConference Publicationen
dc.internal.authorcontactothervanessa.ayalarivera@ucd.ie-
dc.statusPeer revieweden
dc.identifier.doi10.1007/978-3-319-47650-6_21-
dc.neeo.contributorAyala-Rivera|Vanessa|aut|-
dc.neeo.contributorMurphy|Liam, B.E.|aut|-
dc.neeo.contributorThorpe|Christina|aut|-
dc.internal.rmsid788687892-
dc.date.updated2017-08-11T14:22:32Z-
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:Computer Science Research Collection
Files in This Item:
File Description SizeFormat 
AutomaticConstructionOfGeneralizationHierarchies.pdf1.58 MBAdobe PDFDownload
Show simple item record

SCOPUSTM   
Citations 50

1
Last Week
0
Last month
checked on Feb 12, 2020

Page view(s)

770
Last Week
5
Last month
checked on Feb 18, 2020

Download(s)

166
checked on Feb 18, 2020

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.