Lit@EVE: Explainable Recommendation based on Wikipedia Concept Vectors

Files in This Item:
File Description SizeFormat 
insight_publication.pdf113.8 kBAdobe PDFDownload
Title: Lit@EVE: Explainable Recommendation based on Wikipedia Concept Vectors
Authors: Qureshi, M. Atif
Greene, Derek
Permanent link:
Date: 22-Sep-2017
Abstract: We present an explainable recommendation system for novels and authors,called Lit@EVE, which is based on Wikipedia concept vectors. In this system,each novel or author is treated as a concept whose definition is extractedas a concept vector through the application of an explainable word embeddingtechnique called EVE. Each dimension of the concept vector is labelled as eithera Wikipedia article or a Wikipedia category name, making the vector representationreadily interpretable. In order to recommend items, the Lit@EVE systemuses these vectors to compute similarity scores between a target novel or authorand all other candidate items. Finally, the system generates an ordered list of suggesteditems by showing the most informative features as human-readable labels,thereby making the recommendation explainable.
Funding Details: Science Foundation Ireland
Type of material: Conference Publication
Keywords: Machine learningStatistics
Other versions:
Language: en
Status of Item: Peer reviewed
Conference Details: The European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases, Skopje, Macedonia 18-22 September
Appears in Collections:Insight Research Collection

Show full item record

Google ScholarTM


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.