Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device

Files in This Item:
File Description SizeFormat 
Analyzing_the_impact_of_myopia_on_the_SCE-I_using_a_DMD_-_pre-peer_reviewed.pdf1.24 MBAdobe PDFDownload
Title: Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device
Authors: Carmichael Martins, Alessandra
Vohnsen, Brian
Permanent link: http://hdl.handle.net/10197/9212
Date: 2018
Abstract: Purpose: Photoreceptor light acceptance is closely tied to the Stiles-Crawford effect of the first kind (SCE-I). Whether the SCE-I plays a role in myopic development remains unclear although a reduction in directionality has been predicted for high myopia. The purpose of this study is to analyse the relationship between foveal SCE-I directionality, axial length, and defocus for emmetropic subjects wearing ophthalmic trial lenses during psychophysical measurements and for myopic subjects with their natural correction. Method: A novel uniaxial flicker system has been implemented making use of a Digital Micromirror Device (DMD) to flicker between a 2.3 visual degrees circular reference and a set of circular test patterns in a monocular Maxwellian view at 1 Hz. The brightness of the test is adjusted by the duty cycle of the projected light to an upper limit of 22727 Hz. The wavelength and bandwidth are set by a tuneable liquid-crystal filter centred at 550 nm. A total of 4 measurement series for 11 pupil entrance points have been realized for the right eye of 5 emmetropic and 8 myopic subjects whose pupils were dilated with tropicamide. The emmetropic subjects wore ophthalmic trial lenses in the range of -3 to +9 dioptres to mimic hyperopic to highly myopic vision and resulting visibility plots have been fitted to a Gaussian SCE-I function. In turn, the myopic subjects wore their natural correction during the analysis of the SCE-I. All subjects had their axial length determined with an ultrasound device. Results: A SCE-I directionality parameter for well-corrected vision in the range of 0.03 to 0.06/mm2 was found for the emmetropic subjects with corrected vision in fair agreement to values in the literature. The results also revealed a marked reduction in directionality in the range from 16% to 30% with every 3 dioptre increase of simulated myopia, as well as a 10% increased directionality in simulated hyperopic eyes. For both emmetropic and myopic subjects a decrease in directionality with axial length was found in agreement with theoretical expectations. Conclusion: The study confirms a clear link between SCE-I directionality, uncorrected defocus, and axial length. This may play a role for emmetropization and thus myopic progression as cone photoreceptors capture light from a wider pupil area in elongated eyes due to a geometrical scaling.
Funding Details: European Commission Horizon 2020
Type of material: Journal Article
Publisher: Wiley
Copyright (published version): 2018 Wiley
Keywords: Stiles-Crawford effect;Digital micromirror device;Myopia;Directionality
DOI: 10.1111/opo.12441
Language: en
Status of Item: Peer reviewed
Appears in Collections:Physics Research Collection

Show full item record

SCOPUSTM   
Citations 50

1
Last Week
0
Last month
checked on Jun 23, 2018

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.