Prediction of Deterioration of Asphalt Pavements by Mechanistic-Empirical Methods

Files in This Item:
File Description SizeFormat 
c_92.pdf679.57 kBAdobe PDFDownload
Title: Prediction of Deterioration of Asphalt Pavements by Mechanistic-Empirical Methods
Authors: Belay, Abraham
O'Brien, Eugene J.
Collop, Andrew
Permanent link: http://hdl.handle.net/10197/9244
Date: 23-Oct-2008
Abstract: Cracking of an asphalt layer arises from repeated tensile strains, the maximum value of which typically occurs at the bottom of the layer (particularly for thinner asphalt layers). The crack, once initiated, propagates upwards causing gradual weakening of the structure. The development of a rut arises from the accumulation of permanent strains throughout the structure. A model of pavement damage accumulation, leading to a prediction of pavement life, is described. In addition to pavement damage, the model allows for the spatial repeatability of traffic loading and differences in the progression of damage at different points along the road. The procedure is divided into four main areas: dynamic vehicle simulation; pavement primary response calculation; pavement damage calculation and damage feedback mechanism. The modes of damage that are included in the model are structural rutting and fatigue damage to the asphalt layers. These primary response influence functions are combined with the dynamic tyre forces, to give primary pavement response time histories at a large number of equally spaced discrete points along the pavement.  The primary responses are combined with the appropriate pavement damage models and the number of load applications, to predict damage (rutting and fatigue damage) as a function of distance along the pavement for each time increment. An updated surface profile is then generated by subtracting the calculated rutting in the wheel path from the initial profile used for that time increment. This mechanism accounts for the effects of changing surface roughness on the pattern of statistical spatial repeatability and hence the pattern of mean dynamic tyre force. The calculated fatigue damage is used to reduce the stiffness of the asphaltic material for each sub-section. This mechanism reflects the effects of cumulative fatigue damage on the primary responses and hence subsequent pavement damage. The above process is then repeated for many time increments until the pavement has reached the end of its serviceable life. The model gives many insights into the nature of the deterioration process and the changing pattern of spatial repeatability as the profile deforms.
Type of material: Conference Publication
Publisher: World Road Association/PIARC
Keywords: Mechanistic-empirical;Dynamic;Load;Rutting;Fatigue;Pavement damage;Spatial repeatability;Statistical
Language: en
Status of Item: Peer reviewed
Is part of: 6th Symposium on Pavement Surface Characteristics, 20-23 October 2008, Potoroz, Slovenia: proceedings
Conference Details: 6th Symposium on Pavement Surface Characteristics, Portoroz, Slovenia, 20-23 October 2008
Appears in Collections:Civil Engineering Research Collection

Show full item record

Download(s)

1
checked on May 25, 2018

Google ScholarTM

Check


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.